Flotative Kupferrückgewinnung aus Rostaschen der thermischen Abfallverwertung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Beim aktuellen Stand der Technik wird aus den Feinfraktionen der Rostaschen aus der Abfallverbrennung Kupfer nur unzureichend zurückgewonnen. Die Kupferanreicherung in den Feinfraktionen wird dadurch erschwert, dass ein signifikanter Teil nicht in metallischer Form, sondern als Oxide oder andere mineralischen Verbindungen vorliegt. Ein möglicher Ansatz könnte die Flotation der Aschen sein. Daher wurde Untersuchung zu Thioharnstoff, Thiophosphat und Thiocarbamat basierten Sammlern anhand synthetischer Aschebesandteilen durchgeführt. Diese zeigten, zwar einen flotierbarkeit des Kupfers aber auch Interaktionen mit den Matrixbestandteilen, wie Gips und Zement. Daher wurde organische Drücker erprobet, die Kupferausbringen und Anreicherung deutlich steigern konnten.

SELFRAG-Technologie - der Schlüssel für die nächste Generation von Aufbereitungsanlagen für MVA-Schlacke
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Gegenwärtig realisiert die SELFRAG AG den Aufbau einer neuen Generation von Aufbereitungsanlagen für MVA-Schlacke, deren innovativer Ansatz die selektive Fragmentierung mit trocken- und nassmechanischen Aufbereitungstechnologien aus Bergbau und Recycling kombiniert. Nebst der Rückgewinnung von Metallkonzentraten mit hoher Qualität, ermöglicht die Anlage das Recycling von mineralischen Fraktionen. Dadurch wird die Recyclingquote auf 50-60 Gew.-% des Schlackeninputs gesteigert, und der knappe Deponieraum in der Schweiz massiv entlastet. Die neuartigen Fraktionen können in der Schweiz gesetzeskonform als Sekundärrohstoffe in der Zementklinkerproduktion verwertet werden. Zukünftig ist auch ein Einsatz als sekundäre Gesteinskörnung im Beton oder Straßenbau denkbar.

Vergleich von verschiedenen Metallrückgewinnungstechnologien für MVA-Schlacken in der Schweiz
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Im Rahmen des Projekts "MetExSlag" wurden vier verschiedene Metallrückgewinnungsanlagen untersucht, um die Metallrückgewinnungsraten, die Metallqualität (bestimmt durch Schmelzausbeuten) und die Restschlackenqualität über Massenbilanzen der Outputströme zu ermitteln. Von jeder Metallrückgewinnungsanlage wurden ca. 100 Tonnen NE-Metalle gesammelt (Qualität Q1) und in einem zweiten Schritt wurden diese Chargen auf einer mechanischen Veredelungsanlage prozessiert (Qualität Q2) und die Ausbeuten bestimmt.

Zn Entfernung aus metallurgischen Stäuben mit schwefeloxidierenden Bakterien
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Zinkhaltige Stahlwerksstäube, wie sie bei der Eisen- und Stahlproduktion über die Route Hochofen- Konverter anfallen, können als bedeutende Sekundärrohstoffe angesehen werden. Gegenwärtig zählen zwei Verfahren zum Stand der Technik bezüglich der Abtrennung und Gewinnung von Zink aus Stahlwerksstäuben, nämlich pyrometallurgische und hydrometallurgische Verfahren. Einige Prozessrouten erzeugen jedoch wiederum nicht verwertbare Sekundärabfälle und können teilweise nur unter hohen Energieaufwand betrieben werden und sind daher ökologisch gesehen nicht als nachhaltig einzustufen.

InnoBLA III: Auswirkungen der thermischen Bodenbehandlung auf die Mobilität von Schwermetallen und die Korrosion von Heizlanzen
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Die Auswirkungen der thermisch unterstützten Bodenluftabsaugung mit festen Wärmequellen (thermal conduction heating, TCH) auf die Mobilität von Metallen sind noch wenig erforscht. Eine Forschergruppe zeigte einen Anstieg der Mobilität von Fe und Al (Roh, et al., 2000), eine andere erklärte eine erhöhte Ökotoxizität durch eine Änderung der Speziation von Schwermetallen (Bonnard, Devin, Leyval, Morel, & Vasseur, 2010), eine weitere beobachtete einerseits eine schwächere Sorption durch Zerstörung der organischen Substanz, aber auch eine Umverteilung von Fe und Zn in schwerer lösliche Fraktionen (Biache, Mansuy-Huault, Faure, Munier-Lamy, & Leyval, 2008). Die wenigen existierenden Studien zu diesem Thema basieren auf dem rein empirischen Prinzip der sequentiellen Extraktion, welche weder die realen Mechanismen, welche die Mobilität kontrollieren, berücksichtigt, noch die reale Speziation der Schwermetalle untersucht.

Lithium-Ionen-Batterien: Anforderungen an das Recyclingverfahren der Zukunft
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der Einsatz von wertvollen und teilweise kritischen Rohstoffen wie Kobalt, Nickel, Mangan und Lithium in Kathodenmaterialien sowie die prognostizierten Marktentwicklungen machen das Recycling von Lithium-Ionen-Batterien zu einem abfallwirtschaftlich relevanten Thema. Dieser Beitrag beleuchtet die Entwicklung und Vielfalt dieser Kathodenmaterialien und leitet daraus Anforderungen an zukünftige Aufbereitungs- bzw. Recyclingverfahren ab. Die schnelle Weiterentwicklung der Zellchemismen hin zu nickelreichen Kathodenmaterialien stellt bestehende Verfahren vor wirtschaftliche Probleme und unterstreicht zusätzlich die Notwendigkeit eines flexiblen Prozesses, welcher mit einer variierenden chemischen Zusammensetzung des Abfallstromes zurechtkommen muss.

Recycling von Al-Schrotten mit hohem Organikanteil
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Beim Al-Recycling sind zwei grundlegende Verfahrensvarianten zu unterscheiden. Umschmelzwerke (Remelter) dienen der Produktion von Knetlegierungen durch Ein-satz wenig verunreinigter Schrotte. Stärker kontaminierte Materialien, zu denen auch Al-Schrotte mit hohem Organikanteil zählen, gelangen unter Verdünnung mit Reinaluminium und Zusatz von Salzen in Schmelzhütten (Refiner), wo Gusslegierungen hergestellt werden. Im Rahmen des Beitrags erfolgte die Erläuterung von industriell eingesetzten Verfahren zum Recycling von Al-Schrotten mit hohem Organikgehalt. In diesem Zusammenhang wird auch auf die Notwendigkeit von ausreichenden Industrieanlagen zum Schließen der Kreisläufe´eingegangen.

Untersuchungen zur mechanischen Entschichtung von Elektroden aus Lithium-Ionen-Altbatterien
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der weltweite zunehmende Einsatz von LIB führt auch zu einer steigenden Menge von Produktions- und Konsumptionsrückständen, die unter Berücksichtigung der ökologischen und wirtschaftlichen Nachhaltigkeit entsorgt werden müssen. Idealerweise werden die Materialien aus den Neuschrotten oder Altbatterien in die Produktion neuer Batterien zurückgeführt. LIBs enthalten werthaltige Metalle, wie Aluminium, Eisen, Kupfer, Lithium, Kobalt, Nickel und Mangan. Diese Metalle, ausgenommen Eisen, bilden hauptsächlich die Stromleiterfolien und Beschichtungen der Elektroden. Aktuell werden Lithium-Ionen-Batterien industriell in Recyclingverfahren behandelt, die auf energie- und kostenintensiven pyrometallurgischen oder hydrometallurgischen Prozessen mit begrenzten Kapazitäten, niedrigen Recyclingraten und einer wirtschaftlichen Abhängigkeit von Kobalt und Nickel als Kathodenmaterialien basieren. Bei diesen Prozessen werden vornehmlich Kobalt, Nickel und Kupfer zurückgewonnen, wohingegen Lithium, Aluminium und Mangan in der Schlacke verbleiben und durch Verfüllung verwertet werden. In Zukunft wird angestrebt, die gesetzliche Recyclingeffizienz von 50 Masseprozent zu erhöhen, und speziell die Kathodenbeschichtungsmaterialien aus Produktionsrückständen direkt für neue Batterieanwendungen wiederzuverwenden (Werner et al. 2020).

Entwicklungen auf dem Gebiet der sensorgestützten Sortierung von Müll bei Binder+Co
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der Einsatz modernster Maschinen in der Aufbereitung und Recycling von primären und sekundären Rohstoffen ist in der heutigen Zeit nicht mehr wegzudenken. Binder+Co kann in diesem Bereich auf eine 125 Jahre lange Erfahrung zurückblicken und ist Pionier im Bereich der sensorgestützten Sortierung von Schüttgütern. Die ersten Sortierer dieser Art wurden bereits Mitte der 1980er ausgeliefert (Kalcher 2011). Seither wurden die Sortierer konsequent hinsichtlich Sensorik und Effektorik weiter-entwickelt und decken alle gängigen Sensortechnologien ab. Dadurch ist die Produktlinie namens CLARITY, welche die optischen Sortierer von Binder+Co im Bereich Recycling abdeckt, seit Jahrzenten eine etablierte Technologie.

Co-Processing von Ersatzbrennstoffen: Beitrag der Zement-industrie zur Recyclingrate
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der Einsatz von Ersatzbrennstoffen (EBS) gewinnt in der Zementindustrie immer mehr an Bedeutung. In Österreich besonders hervorzuheben sind dabei kunststoffrei-che EBS, die mittlerweile den größten Anteil der eingesetzten Ersatzbrennstoffe aus-machen (Mauschitz 2019; Sarc et al. 2020). Auch die Zementindustrie könnte dadurch einen Beitrag zur Erreichung der im EU Kreislaufwirtschaftspaket festgelegten Recyclingziele leisten, sofern der recycelte bzw. in den Klinker eingebundene Anteil des EBS auch rechtlich als stoffliches Recycling anerkannt und den EU Recyclingzielen zugerechnet wird. An der Montanuni-versität Leoben wurde daher mittels Analysen des Aschegehalts und der Aschezu-sammensetzung damit begonnen, eine wissenschaftlich fundierte Datengrundlage für diese Fragestellung zu schaffen.

 1  2  3 . . . . >
Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?