Boilers with difficult fuels such as waste, refuse derived fuels and biomass, may not only be hit by corrosion on the heat transfer surfaces of evaporators or superheaters, but also at the cold end, i.e. on ECO and heat transfer surfaces in the preheater area and even on the evaporator tubes or uncooled steel sheets located there. Corrosion may also occur during subsequent flue gas cleaning, on the raw gas and clean gas sides.
It is known from the combustion of fossil solid fuels that, in most cases, the problems of corrosion at the cold end are to be traced back to sulphuric acid, i.e., the dew point temperature of sulphuric acid constitutes a conditioning factor for operation processes. This dew point temperature is a function of the concentration of gaseous SO3 and the content of water vapour in the flue gas. In common terminology in the field of coal combustion, the term dew point corrosion is synonymously used with sulphuric acid dew point corrosion. This clear correlation has to do with the chemistry of coal as a fuel. If reference is made to the dew point of water, the water dew point is expressly referred to.
These common references to dew points and to sulphuric acid as the cause of any corrosion at the cold end (inasfar as the water dew point is not even reached) are not to be directly transferred to boilers with difficult fuels. Current findings suggest this. One of the causes here – compared to coal – lies in the significantly changed chemistry of these fuels. But also process-related aspects can play a role, particularly DENOx (SNCR, selective non-catalytic reduction).
This article demonstrates that, in the case of difficult fuels, not only sulphuric acid is to be considered as the cause of cold end corrosion, but also salts with hygroscopic and deliquescent properties. Deliquescent salts are hygroscopic to such extent that they deliquesce and form an electrolyte, thus causing corrosion through an aqueous electrolyte. This deliquescence corrosion can be distinguished from the dew point corrosion of sulphuric acid and water by the fact that the triggering process, the formation of halogen salts, does not constitute a dew point but, initially, the deposition of a salt resulting from the phase transition from a gaseous to a solid state or from the deposition of these salts as solid particles; it is only afterwards that, with sufficient humidity in the flue gas and appropriate temperatures, the deposited salts deliquesce and form a saturated salt solution, the corrosive electrolyte.
Copyright: | © TK Verlag - Fachverlag für Kreislaufwirtschaft | |
Quelle: | Waste Management, Volume 3 (Oktober 2012) | |
Seiten: | 14 | |
Preis inkl. MwSt.: | € 0,00 | |
Autor: | Dr. rer. nat. Thomas Herzog Dr. Wolfgang Spiegel Dipl.-Mineraloge Wolfgang Müller | |
Artikel weiterleiten | Artikel kostenfrei anzeigen | Artikel kommentieren |
Alternative Bettmaterialien für Wirbelschichtöfen mit Potenzial zur Wiederverwendung als Zementzuschlagstoff
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Die Erwartungen an nachhaltige, lokale Energiequellen steigen mit dem Ausstieg aus der fossilen Energie. Gleichzeitig geraten Deponien an ihre Grenzen und ein gesellschaftliches Umdenken in Richtung der Kreislaufwirtschaft ist im Gange. Da besonders die Holzenergie ein Hoffnungsträger heimischer Energieproduktion ist, ist es notwendig, heutige Prozessabläufe kritisch zu evaluieren. Dazu gehört auch die Erfassung der Reststoffe, die aus dem Verbrennungsprozess entstehen.
The AHOY-Project: Waste Wood Sorting with X-ray Technology
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Waste wood is a valuable resource, but is hardly recycled despite increasing demand, predicted supply gaps (Mantau et al. 2010), and galloping wood prices since 2020 (Trading Economics 2022). In Germany alone around 10 million tons of waste wood accumulated in 2016. Only a minor part (1.7 million tons) is substantially reused in the production of chipboards. The majority (7.7 million tons) is fed into energy recovery, i.e., burned in one of the 80 German waste wood power plants (BMUV 2021), and is thus lost, while the supply of fresh wood is limited by slow growth cycles and finite acreage. In view of current environmental regulations, climate change and massive tree mortality, waste wood should be kept permanently in the circular economy as a high-quality raw material in the future.
Fundamental drying experiments with processed residual municipal solid waste materials
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Waste management companies and municipalities in southwestern Hungary aim the fulfillment of the EU’s target, namely to decrease landfilling below 10 % and increase recycling above 65 % of municipal solid wastes. However selective collection is continuously improved there is still high amount of residual MSW is generated. A new mechanical RMSW processing plant (20 t/h) and an experimental RDF pyrolysis plant (200 kg/h) had been built (Faitli et al. 2020) and now extensive research is being carried out to solve the local utilization of the bio-fraction and the RDF. This is the reason why this fundamental drying research was necessary. Dryer classification and the selection of the best solid waste drying techniques vary significantly due to the vast range of waste to be dried and the inherent challenges of dealing with non-standardized systems. In general, biomass dryers may be categorized according to their heat transmission technique and the physical qualities of wet particles.
Mechanical short-term and long-term properties of PP recyclate blends
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
The amount of recycled material in new products should be increased in the next few years. By adding virgin material, the mechanical properties of the pure recyclate can be improved. In this work, 10 % and 40 % post-consumer recyclate was added to a virgin material and analyzed. Both raw materials were also tested. The short-term as well as the long-term properties decrease with increasing recyclate content. The recyclate has a higher influence on the young’s modulus, yield stress and slow crack growth resistance than on the notched impact toughness.
Analysis of different polypropylene waste bales – evaluation of the source
material for polypropylene recycling
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
In 2020 Polypropylene (PP) accounted for almost 20% of the plastic consumption in Europe, making it the second most used plastic (Plastics Europe 2021). Due to the high volume of PP used as packaging material (Plastics Europe 2021), large amounts of PP waste are generated every year. Therefore, mechanical recycling of PP waste is a crucial step towards a circular economy. Although there are already some well-established recycling techniques, the lower quality of recyclates compared to virgin materials still poses an obstacle for their use in more demanding applications. Improvements of every step of the whole recycling value chain could solve this problem, with proper and more accurate sorting techniques being particularly crucial.