Thermische Metallgewinnung aus Tertiärabfällen

In einem speziell entwickelten pyrometallurgischen Verfahren werden feinkörnige, feinstverwachsene Rückstände aus einer mechanischen Shredderrückstandsaufbereitungsanlage, welche sehr geringe Metallgehalte aufweisen, weiterbehandelt. Dabei wird Anlagentechnik der Metallurgie auf innovative Art mit modernster Technik der thermischen Abfallverwertung verbunden.


KURZFASSUNG: In einem speziell entwickelten pyrometallurgischen Verfahren werden feinkörnige, feinstverwachsene Rückstände aus einer mechanischen Shredderrückstandsaufbereitungsanlage, welche sehr geringe Metallgehalte aufweisen, weiterbehandelt. Dabei wird Anlagentechnik der Metallurgie auf innovative Art mit modernster Technik der thermischen Abfallverwertung verbunden. Auf diese Weise wird das Ausbringen von Kupfer und Edelmetallen aus Rückständen, welche ohne die Nutzung der darin enthaltenen Metalle bisher deponiert oder verbrannt wurden, maximiert. Zudem werden als Nebenprodukte ein mineralisches Bauprodukt/Bindemittel sowie Zinkstaub produziert und die in den Rückständen enthaltene Energie durch Verstromung und Bereitstellung von Prozessdampf und Nah- bzw. Fernwärme für bestehende Anwendungen genutzt. Die Großindustrielle Umsetzung dieses neuartigen Verfahrens wird nach der bereits erfolgten UVP-Genehmigung und der derzeit laufenden Detailplanung in den nächsten 2-3 Jahren erfolgen.
1 EINLEITUNG
Am Standort Ennshafen in Oberösterreich betreibt Bernegger seit 2006 die weltweit modernste Shredderrückstandsaufbereitungsanlage (SRA-Anlage). Im Wesentlichen werden sehr spezifische metall- und kunststoffhaltige Abfälle – v.a. Sekundärabfälle von Shredderanlagen – in einem mehrstufigen mechanischen Aufbereitungsprozess behandelt. Dabei werden aus den Abfällen wertvolle, sortenreine Rohstoffe (Metalle, Kunststoffe) rückgewonnen.

Bei der Aufbereitung fallen zwei relevante Stoffströme an, welche ökologisch bzw. ökonomisch nicht sinnvoll weiter mechanisch aufbereitet werden können. Diese Fraktionen (Flusen und Sand) werden derzeit in Österreich verbrannt bzw. deponiert. Da in diesen Rückständen jedoch immer noch geringe Anteile an Wertstoffen wie Edelmetalle, aber unter anderem auch weitere als kritische Rohstoffe eingestufte Metalle enthalten sind, wurde ein internes Forschungsprojekt gestartet mit dem Ziel, die Rückgewinnung dieser Wertstoffe im industriellen Maßstab zu gewährleisten.



Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Quelle: Recy & Depotech 2020 (November 2020)
Seiten: 2
Preis inkl. MwSt.: € 1,00
Autor: Kurt Bernegger
H. Lugmayr
Manuel Riedl
C, Mlinar

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Development of local municipal solid waste management in the Western Transdanubia region of Hungary
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Hungarian municipal solid wastes (MSW) management has developed tremendously over the past 15 years. More than 3,000 landfills and dumps had been closed, just to mention one improvement. However, still, lots of work is necessary to accomplish the EU’s ambitious aim of decreasing landfilling and increasing recycling and composting.

Statistische Betrachtung von Infrarot-Sensordaten in der Aufbereitung mit Relevanz zur Brandfrüherkennung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Neue Zündquellen erschweren zunehmend die Lagerung und Aufbereitung von Abfällen, insbesondere durch Akkumulatoren oder Batterien kommt es immer wieder zu großen Schäden in abfallverarbeitenden Unternehmen. Zudem ist davon auszugehen, dass sich in den nächsten Jahren die in Verkehr gesetzte Menge an Akkumulatoren und Batterien stark erhöhen wird. Ohne geeignete Messsysteme ist es kaum möglich, Brände frühzeitig zu erkennen. Um mit dem zunehmenden Brandrisiko umzugehen und um brandbezogenen Gefahren entgegenzuwirken wer-den daher IR-Messsensoren eingesetzt. Diese Sensoren werden an verschiedenen Stellen platziert, an denen erfahrungsgemäß mit hohen Temperaturen zu rechnen ist, wie beispielsweise nach Zerkleinerungsaggregaten und anderen Aggregaten mit mechanischer Beanspruchung. Sensoren werden aber auch eingesetzt, um das Material am Ende der Verarbeitung noch einmal zu kontrollieren, bevor es in das Output-Lager befördert wird. Der vorliegende Beitrag wertet die Messdaten von mehreren Anlagenstandorten aus und vergleicht diese. Ziel ist es, Trends in den Daten zu erkennen, um mögliche Maßnahmen abzuleiten. Die Datengrundlage umfasst die Temperaturen der einzelnen Messpunkte sowie gemessenen Maximaltemperaturen. Diese Datengrundlage wird mit qualitativen Daten ergänzt, welche neben dem Grund der Temperaturüberschreitung auch das Material klassifiziert. In diesem Zuge wird auch eine statistisch signifikante Abhängigkeit mit dem verarbeiteten Material hergestellt und auch mit den im Einsatz stehenden Zerkleinerungsaggregaten in Bezug gebracht. Der Ver-gleich der Anlagenstandorte dient dabei der Abschätzung des Risikos für restmüllaufbereitende Unternehmen. Die zu vergleichenden Anlagen weisen teilweise die gleichen Inputmaterialien auf, unterscheiden sich jedoch im jährlichen Durchsatz. Der zu betrachtende Inputstrom umfasst neben gemischten Siedlungsabfällen, Gewerbeabfälle und Sperrmüll.

Erfahrungen mit der biologischen Abbaubarkeit von kompostierbaren Kaffeekapseln
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
In Österreich kommen verstärkt Kaffeekapseln auf den Markt, die als „kompostierbar“ bzw. „biologisch abbaubar“ gekennzeichneten werden. Diese Entwicklung wird von Konsumenten als positiv wahrgenommen, ist jedoch aus abfallwirtschaftlicher und umwelttechnischer Sicht als kritisch zu betrachten. Denn in bisherigen Studien (van der Zee & Molenveld 2020; Rameder 2018; Shrestha et al. 2020), war die Desintegration der zumeist aus PLA bestehenden Kapseln in Labor-versuchen und in der Praxis nach den Anforderungen der EN 13432 nicht in ausrei-chendem Maße gegeben. Die bisherigen Erkenntnisse werden durch die eigenen Ergebnisse der experimentellen Untersuchungen an vier am österreichischen Markt erhältlichen „kompostierbaren“ Kaffeekapseln nur bestätigt. Erfahrungen der österreichischen Abfallwirtschaftsverbände zu dieser Thematik stützen im Wesentlichen die Erkenntnis, dass die derzeitige Entwicklung in Richtung biologisch abbaubare Kunststoffe für das Produkt Kaffeekapsel nach dem derzeitigen Stand der Erkenntnisse und Erfahrungen nicht sinnvoll erscheint.

Bestimmung des elementaren Kohlenstoffs in Feststoffproben zur Beurteilung laut Deponieverordnung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Laut Deponieverordnung 2008 ist die Ablagerung von Abfällen verboten, deren Anteil an organischem Kohlenstoff im Feststoff mehr als fünf Masseprozent beträgt. Ausgenommen sind Abfälle, deren Kohlenstoffgehalt aus elementarem Kohlenstoff, Kohlen- oder Koksanteilen resultiert. In der DIN EN 19539, welche sich mit der Analyse des elementaren Kohlenstoffs beschäftigt, wird eine temperaturabhängige Differenzierung des Gesamtkohlenstoffs in drei Fraktionen beschrieben, den TOC400, den ROC und den TIC900. Dabei soll sich der EC in der ROC-Fraktion wiederfinden. Versuche an Einzel- und Mischstandards zeigen jedoch, dass sich diese Norm nicht zur Bestimmung des elementaren Kohlenstoffs in Boden- bzw. Abfallproben für die Beurteilung laut Deponieverordnung 2008 eignet.

Weiterentwicklung der Abfallwirtschaft in der Freien und Hansestadt Hamburg – Zentrum für Ressourcen und Energie
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (5/2017)
Auf dem Standort der ehemaligen Müllverbrennungsanlage Stellinger Moor in Hamburg wird ein neues Zentrum für Ressourcen und Energie (ZRE) errichtet. Das ZRE ist ein Zusammenschluss von fünf Teilanlagen, die das gesamte Hausmüllaufkommen der Stadtteile im Hamburger Nordwesten verarbeiten. In einem ersten Schritt werden der Abfall sortiert, Wertstoffe gewonnen und eine abfallstämmige Biofraktion sowie ein Ersatzbrennstoff erzeugt. Die einzelnen Stoffströme werden in nachgeschalteten Anlagen weiterbehandelt und Biogas, Fernwärme und elektrische Energie erzeugt. Das ZRE wird seinen vollständigen Betrieb Ende des 1. Quartals 2023 aufnehmen.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
 
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners
 

Selbst Partner werden?
 
Dann interessiert Sie sicher das ASK win - win Prinzip:
 
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
 
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.
 

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...