Perspectives of the Energy Turnaround

Our modern industrial society is facing serious challenges arising from the world’s growing need for energy and the predicted climate change. Energy supply as the biggest source of carbon dioxide emissions will have to undergo a radical transition towards sustainability over the next few decades.

If global warming is to remain below 2 °C with respect to pre-industrial times, the atmospheric concentration of CO2 has to be limited. Since the power sector is responsible for a relatively large portion of total greenhouse gas emissions, special attention should be given to its decarbonization. Thus, fossil fuels must be substituted by low or zero emission renewable energy carriers. These include biomass and hydro power, with solar and wind power as the leading energy sources of the future. As biomass is facing issues with conflicting land use and big hydro power projects are often met with resistance within the population, the long-term growth potentials of these technologies remain limited. Wind and solar energy plants on the other hand can be erected with fewer restrictions wherever the conditions are favorable. The amount of energy supplied by 100 % renewables can fluctuate widely.
In a so-called "electricity-based" infrastructure, large-scale facilities for conversion and storage of excess energy have to be implemented in order to ensure a reliable energy supply. Hydrogen from the electrolysis of water and carbon dioxide from industrial processes or refined from air can serve as raw materials for the production of hydrocarbons. In addition, this conversion of electricity into chemical energy carriers like methane opens up the possibility of supplying the sectors of mobility, raw-material production and heat with clean energy. While certain modes of transport like individual motor car traffic can easily be electrified, others like heavy duty traffic will still require liquid fuels due to their high energy density. These fuels can be supplied through conversion processes based on regenerative electricity. Similarly, other conversion products can be used as input for raw-material production. 
 



Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Quelle: Depotech 2012 (November 2012)
Seiten: 8
Preis: € 4,00
Autor: M.Sc. Dipl.-Ing. (FH) Sebastian Egner
Dipl.-Ing. Wolfgang Krätschmer
Prof. Dr.-Ing. Martin Faulstich

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Ausbau und Weiterentwicklung der Bioabfallvergärungsanlage Dresden
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2019)
Mit dem Kauf der Bioabfallvergärungsanlage Dresden ist der MVV Energie Gruppe ein schneller Markteintritt gelungen. Im Endausbau wird diese Bioabfallvergärungsanlage mit Biogasaufbereitung und -einspeisung eine hochwertige klimaschonende und effiziente Nutzung kommunaler Bioabfälle, die die CO2-Bilanz der Kommunen verbessert und mit dem Ersatz fossiler Energieträger einen wertvollen Beitrag zur Energiewende leistet. Die BAV Dresden ist ein wichtiger Meilenstein für MVV mit einer steilen Lernkurve im Betrieb, Anlagenbau, Stoffstrommanagement und aus energiewirtschaftlicher Sicht. MVV zeigt sich in Dresden als verlässlicher Partner und verantwortungsvoller Akteur in der Bioabfallvergärung und setzt hier die Energiewende erfolgreich um!

Assessing the Resource Efficiency of Biorefineries Using Organic Residues - Methodology and Examples
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2016)
The IEA Bioenergy Task 42 “Biorefining” has the following definition on biorefining: “Biorefining is the sustainable processing of biomass into a spectrum of bio-based products (food, feed, chemicals, and materials) and bioenergy (biofuels, power and/or heat)”. Various types of organic residues are a sustainable resource that offers great opportunities for a comprehensive product portfolio to satisfy the different needs in a future BioEconomy.

EEG 2017 - Auswirkungen auf die energetische Verwertung von Bioabfällen
© Universität Stuttgart - ISWA (9/2016)
Der Ausbau der erneuerbaren Energien ist eine zentrale Säule der Energiewende. Sie soll unsere Stromversorgung klima- und umweltverträglicher und uns unabhängiger von knapper werdenden fossilen Brennstoffen machen. Gleichzeitig soll sie bezahlbar und verlässlich bleiben. Dazu wurde ein erfolgreiches Instrument zur Förderung des Ökostroms konzipiert: das Erneuerbare-Energien-Gesetz (EEG), das im Jahr 2000 in Kraft getreten ist.

Die Erhöhung des Wirkungsgrades eines Holzheizkraftwerkes durch den Einsatz eines Rauchgaswärmetauschers ‒ ein Beispiel aus der Praxis ‒
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2016)
Das Biomasse-Heizkraftwerk in Hagenow produziert seit 1997 umweltfreundlichen Strom an einem traditionellen Standort der Energieerzeugung. Die vormals als Braunkohlekraftwerk in Betrieb gewesene Anlage wurde 1997 in das erste moderne Biomasse-Heizkraftwerk in Deutschland umgewandelt.

Die Bereitstellung von Systemdienstleistung (SDL) durch Biomasseanlagen
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2016)
Eine Übernahme von Aufgaben des konventionellen Kraftwerksparks (für eine sichere Stromversorgung mit hohen Anteilen an fluktuierenden EE)

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
 
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners
 

Selbst Partner werden?
 
Dann interessiert Sie sicher das ASK win - win Prinzip:
 
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
 
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.
 

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...