Seit dem 1. Juni 2005 haben sich in Deutschland die rechtlichen Rahmenbedingungen für die Ablagerung von Abfällen auf Deponien der Klasse I und II verändert. Für die Deponieklasse I liegt der Zuordnungswert für den Gesamt-Kohlenstoffanteil (TOC) bei ≤ 1 Gew.- , für die Deponieklasse II bei ≤ 3 Gew.-%. Über einen Untersuchungszeitraum von insgesamt 21 Monaten wurden alle abgelagerten mineralischen Reststoffe auf insgesamt 17 Deponie im Bayern dokumentiert (Heindl et al. 2007).
Auf einer Deponie im Süden Bayerns werden seit 2005 lediglich mineralische Reststoffe abgelagert. Für den Untersuchungszeitraum von 21 Monaten wurde der Anteil der verschiedenen Abfallgruppen bestimmt. Abfälle aus der Abfallgruppe 17 (Bau- und Abbruchabfälle) stellen 94 % der Gesamtmenge dar. In 71 % der Fälle führte der Schadstoffparameter „Polyzyklische aromatische Kohlenwasserstoffe (PAK)“ zur Einstufung in Deponieklasse I bzw. DK II. Für fünf Hauptabfallarten wurde durch Einzelanalysen die Einzelkomponenten der PAK, u.a. die Leitsubstanzen Naphthalin und Benzo(a)pyren erfasst. Zur besseren Charakterisierung der wichtigsten Abfallarten wurde zusätzlich das Elutionsverhalten untersucht. Die Schadstoffmenge im Deponiekörper wurden hinsichtlich der Parameter Kohlenwasserstoffe, die Summe der PAK, die Einzelsubstanzen Naphthalin und Benzo-(a)pyren, die Schwermetalle Arsen, Blei, Cadmium, Chrom (ges.), Kupfer, Nickel, Quecksilber, Thallium und Zink sowie die Menge der enthaltenen Cyanide (ges.) berechnet. Diese Werte sind als Näherungswerte zu betrachten, da lediglich für ca. 42 % der abgelagerten mineralischen Reststoffe Deklarationsanalysen vorlagen. Die Bilanzierung zeigt, dass die Auswaschung der Schadstoffe sehr gering ist. Den Haupanteil an PAK im Sickerwasser stellt Naphtalin dar. Erhöhte Schwermetallkonzentrationen wurden insbesondere in den niederschlagsarmen Wintermonaten beobachtet.
Autoren:
Prof. Dr. Soraya Heuss-Aßbichler
Dipl.-Ing. Martin Brunner
Dr. Gerhard Heindl
Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben | |
Quelle: | Depotech 2008 (November 2008) | |
Seiten: | 6 | |
Preis inkl. MwSt.: | € 3,00 | |
Autor: | Prof. Dr. Soraya Heuss-Aßbichler Dr. Gerhard Heindl | |
Artikel weiterleiten | In den Warenkorb legen | Artikel kommentieren |
EVALUATION OF ELUSION RATE OF ALKALINITY FROM BOTTOM ASH FOR A LONG TERM PERIOD
© IWWG International Waste Working Group (10/2007)
The pH in a landfill layer affects many phenomena such as dissolution/precipitation and adsorption/desorption of heavy metals, activities of microorganisms, CO2 absorption/emission etc. However, because of a lack of knowledge about the leachate characteristics after closing a landfill site, some inhabitants around a landfill site that has been constructed or is under consideration are anxious about the environmental safety of the landfill site, and often oppose the construction of a new landfill site. Therefore, it is very important to predict the pH change for a long term period for the management of a landfill site after closing. In order to predict the pH in a landfill layer, it is necessary to know the total amount of alkali and acid and their supply and consumption rates.
MODELING OF TRANSPORT AND GEOCHEMICAL PROCESSES BETWEEN LANDFILL LEACHATE AND A SATURATED BARRIER SYSTEM
© IWWG International Waste Working Group (10/2007)
Landfill leachate is a dangerous and polluting solution formed by a very complex sequence of physical, chemical and biological processes modifying the rainwater that percolates through waste (Bogner et al.,1996). Migration of the pollutants from the waste material into the percolating water is another important phenomenon requiring attention (Mora-Naranjo et al., 2004). The resulting leachate is a solution containing dissolved organic matter, inorganic macrocomponents, heavy metals and xenobiotic organic compounds and is characterized by reducing redox state (Christensen et al., 2001). Migration is a long-term and continuous process and the leachate may evolve and pollute the surrounding environment for hundred of years (Ustohalova et al., 2006).
CLONIC: CLOSING THE NITROGEN CYCLE FROM LANDFILL LEACHATES. A BIOLOGICAL PROCESS WITH PARTIAL NITRITATION AND ANAMMOX FOLLOWED BY THERMAL DRY TREATMENT.
© IWWG International Waste Working Group (10/2007)
CESPA, being part of the Ferrovial Group, is a leader in waste management and urban services in Spain. CESPA has a long experience in landfill construction and management, having a total of 37 landfills either in property or in exploitation. As one of the legal and environmental requirements, a suitable leachate treatment must be applied before the discharge to the receiving media. Thus, the decision to choose for an specific leachate treatment depends on different parameter such as: the landfill site location, physical location of the leachate treatment plant, the leachate quality, the discharge requirements and the best technologies available.
TREATMENT OF LEACHATE FROM A LARGE HAZARDOUS WASTE LANDFILL SITE IN SOUTH AFRICA
© IWWG International Waste Working Group (10/2007)
The Vissershok Waste Management Facility is a privately owned hazardous waste landfill site, located to the north of Cape Town in South Africa. The joint owners are South African waste management companies, Enviroserv Waste Management and The Wasteman Group (partly owned by Suez Environment). Forty hectares of the site is permitted to receive H:H (high hazard rating) waste and has been in operation since 1974. It has an anticipated life to between 2020 and 2025. The facility presently receives about 300 000t of waste per annum of which some 23 percent is hazardous. The site provides disposal and treatment facilities for many types of hazardous waste. In addition there is an encapsulation process for wastes that cannot be treated or disposed of onto the landfill.
SIMULATION AND MODELLING OF THE FATE AND TRANSPORT OF CHEMICAL WARFARE AGENTS IN LABORATORYSCALE LANDFILLS
© IWWG International Waste Working Group (10/2007)
A terrorist attack could result in the generation of large quantities of contaminated building debris that requires disposal. This debris could be contaminated with chemical and/or biological contaminants. The development of plans for the safe disposal of large quantities of contaminated debris requires information on the behavior of such debris in landfills. This information is required to insure that the cleanup from a catastrophic event can proceed without delays attributable to concerns over the safety of a disposal alternative.