Lachgasemissionen im Energiemaisanbau unter Einsatz von Gärrestsubstrat

Emissionen von Treibhausgasen (THG) aus dem Landwirtschaftssektor haben einen beträchtlichen Anteil an den globalen Flüssen von Kohlendioxid (CO2), Distickstoffoxid bzw. „Lachgas“ (N2O) sowie Methan (CH4) (Robertson et al. 2000). Weltweit verursachen die Nutzung landwirtschaftlicher Böden, die Haltung von Tieren sowie Landnutzungsänderungen zusammen fast 30 % der gesamten THG-Emissionen. In Deutschland haben Emissionen aus der Landwirtschaft einen Anteil von 7,7 % an den Gesamtemissionen in CO2-Äquivalenten. Hier sind stickstoffhaltige Dünger eine der Hauptquellen für N2O-Emissionen. N2O hat aufgrund seines hohen spezifischen Treibhausgaspotenzial (GWP) eine besondere Relevanz. Auf einen Zeithorizont von 100 Jahren betrachtet, beträgt das GWP von N2O 310 CO2-Äquivalente.

Emissionen von Distickstoffmonoxid bzw. “Lachgas” (N2O) aus landwirtschaftlich genutzten Böden stellen eine erhebliche Quelle dieses starken Treibhausgases dar. In diesem Zusammenhang wird der Einsatz von Gärrestsubstrat aus Biogasanlagen in seiner Wirkung auf die N2O-Emissionen überprüft, denn durch die Vergärung wird u. a. der Ammoniumanteil infolge des Abbaus organischer Substanz erhöht. Die hier dargestellten Düngestufen umfassten vier Gärrestvarianten von 75 %, 100 %, 125 % und 200 % standortübliche Düngung. Die höchsten Emissionen wurden in den ersten sieben bis neun Wochen gemessen. Dabei wurden in der 200-%-Variante Flüsse bis zu 6,4 mg N2O * m-2 * h-1 nachgewiesen. Die Flüsse zeigten teilweise sehr hohe Schwankungsbreiten, was auf die generelle räumliche Heterogenität von N2O-Emissionen aus landwirtschaftlichen Böden hinweist. Für den betrachteten Zeitraum von April bis November 2011 wurde ein mittlerer Emissionsfaktor für N2O-N von 3,61 % ermittelt. Das liegt über dem vom IPCC verwendeten Faktor von 1,25 % und bestätigt die Legitimität der derzeitigen Diskussion um die tatsächliche Treibhausgasbilanz des Anbaus von Bioenergiepflanzen. Aus diesem Grunde müssen weitere Messungen durchgeführt werden.



Copyright: © Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock
Quelle: 6. Rostocker Bioenergieforum (Juni 2012)
Seiten: 8
Preis inkl. MwSt.: € 0,00
Autor: M. Sc. Sebastian R. Fiedler
Dr. Uwe Buczko
Prof. Dr. Stephan Glatzel

Artikel weiterleiten Artikel kostenfrei anzeigen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Technische Möglichkeiten zur Beeinflussung von Kohleeigenschaften
© HAWK Hochschule für angewandte Wissenschaft und Kunst - Fakultät Ressourcenmanagement (10/2012)
Die Anwendung von Pflanzenkohlen aber auch kohlehaltiger Produkte aus anderen Reststoffen wie z.B. phosphorhaltige Klärschlämme sind vielfältig. Die Stoffe können als Bodenzusatzstoffe, Futtermittel, Stalleinstreu zur Verbesserung der Stallhygiene, Güllebehandlung, Wasser- bzw. Abwasserbehandlung, Nährstoffretention, Bodensanierung, Additiv zur Steigerung der Biogasausbeute in Fermentern etc. eingesetzt werden. Eine Analyse der erzielbaren Verbesserungspotentiale in den verschiedenen Einsatzfeldern ist Gegenstand aktueller umfangreicher Untersuchungen im Rahmen von Verbundforschungsprojekten in welche PYREG als Anlagenhersteller integriert ist.

Voll unter Strom: Bis 2050 Versorgung durch Erneuerbare Energien möglich – vielleicht:
© Deutscher Fachverlag (DFV) (8/2010)
Die Europäische Klimastiftung (ECF) hat eine von McKinsey erstellte Studie zur Stromversorgung der Zukunft veröffentlicht.

Decarbonisierungsstrategien für den Kohlenstoffkreislauf: Zukunftsvisionen
© HAWK Hochschule für angewandte Wissenschaft und Kunst - Fakultät Ressourcenmanagement (10/2012)
Seit Beginn der Industrialisierung wird der Kohlenstoffkreislauf anthropogen verursacht irreversibel dadurch gestört, dass dem unter Sauerstoffabschluss vorhandenen Langzeit-Reservoir der fossilen Rohstoffe mit zunehmender Geschwindigkeit Kohlenstoff entnommen und dem schnellen Kohlenstoffkreislauf zugeführt wird. Weil diese Störung über den Treibhauseffekt des Kohlendioxids den Klimawandel forciert, sind neue Strategien für das Management des Kohlenstoffkreislaufes erforderlich. Anhand von drei Beispielen werden solche Strategien erläutert und bewertet.

Thermochemische Verfahren zur Erzeugung von Biokohle
© HAWK Hochschule für angewandte Wissenschaft und Kunst - Fakultät Ressourcenmanagement (10/2012)
Das Thema Biokohle ist nicht neu aber von hoher Aktualität. Gründe sind der Klimaschutz und die Ressourcensicherheit. Sowohl die energieintensive Grundstoffindustrie, z.B. Stahl-, Zement- und Kalkwerke, als auch die Betreiber fossil befeuerter Kraftwerke, insbesondere von Kohlekraftwerken, haben ein fundamentales, betriebswirtschaftlich motiviertes Interesse an klimaneutralen und gleichzeitig kostenstabilen und günstig verfügbaren (Energie-)Rohstoffen.. Es ist klar, dass die genannten Branchen bei (Teil-)Substitution der Einsatzstoffe möglichst keine Beeinflussungen ihrer Prozesse und Betriebsabläufe wünschen. Biokohle zeigt dabei im Vergleich zu nicht carbonisierter Biomasse verschiedene vorteilhafte Eigenschaften für die genannten Einsatzfelder, wie höhere Energiedichte, hohen Kohlenstoffgehalt, geringeren Flüchtigengehalt oder bessere Mahlbarkeit. Im Folgenden wird ein Überblick über die Prozesse zur Erzeugung von Biokohle gegeben. Dabei liegt der Fokus auf den thermochemischen Verfahren. Weiterhin wird der Versuch unternommen, eine sinnvolle Einteilung und Übersicht der Biokohleerzeugungsverfahren zu erstellen. Zunächst erfolgt jedoch eine kritische Reflexion der CO2-Neutralität von Bioenergie.

Biochar research and technology in Europe – state of the art
© HAWK Hochschule für angewandte Wissenschaft und Kunst - Fakultät Ressourcenmanagement (10/2012)
Biochar systems following the terra preta phenomenon aim at long-term carbon sequestration into agroecosystems, while simultaneously improving ecosystem services such as soil fertility and crop production. In addition, the terra preta concept teaches us how to sustainably use natural resources such as biomass and soil. However, despite several patents and technology advancement, we are far away from using this concept in a sustainable way, being successful in Amazonia for at least 2,000 years. Therefore, this European Coordination project in Science and Technology (COST) connects national biochar research and technology across Europe to enable quick implementation of sustainable management of natural resources, especially to maintain or improve soil quality while efficiently sequestering carbon in the long-term.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
 
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners
 

Selbst Partner werden?
 
Dann interessiert Sie sicher das ASK win - win Prinzip:
 
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
 
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.
 

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...