Process and Quality Control of MBT-Waste by Means of Thermal Analysis

The present study reports on the application of thermal analysis for investigation and characterization of MBT – materials. The thermal behaviour of waste materials depends on physical and chemical properties of all waste components.

The daily practice of mechanical-biological waste treatment requires appropriate control whether the goals in terms of reducing the reactivity have been attained. Measures to improve existing technologies and new processes also have to be evaluated by examining the waste during the process or at important interfaces. While modern analysis methods are used to determine pollutants, mainly cumulative parameters like ignition loss, organic carbon or calorific value are available for the evaluation of the organic substance. Though they are suitable to make statements within a process about the progress of the degradation, they permit comparisons between different plants only with some reservations. The biological tests in the aerobic and anaerobic environment for the examination of reactivity and gas formation potential have more meaning. However, these analyses take long and quick information about the status of the process is therefore not available. Especially in case of incidents when there is need for action, quick but meaningful testing methods are advantageous. It is therefore important to introduce modern testing methods in the field of wastes analysis in order to evaluate the degradation of organic substances in the biological treatment.

IR-spectroscopy and thermal analysis meet these requirements. This paper is about thermoanalytical tests of mechanically- iologically treated residual waste. The possibilities offered by thermal analysis for practical use are explained with several examples. The presented examples include the use of thermogravimetry/mass spectrometry (TG/ MS) and differential scanning calorimetry (DSC). The evaluation of the results is carried out by means of the device-software (Proteus) and additionally by means of multivariate data analysis.

Copyright: © Wasteconsult International
Quelle: MBT 2007 (Mai 2007)
Seiten: 10
Preis inkl. MwSt.: € 5,00
Autor: Dipl. Ing. Dr. Ena Smidt
Dipl.-Ing. Johannes Tintner

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren

Diese Fachartikel könnten Sie auch interessieren:

Thermische Analyse zur Prozess- und Qualitätskontrolle bei der mechanisch-biologischen Behandlung
© Wasteconsult International (5/2007)
Die tägliche Praxis der mechanisch-biologischen Abfallbehandlung erfordert eine entsprechende Kontrolle, ob die Ziele in Hinblick auf die Abnahme der Reaktivität erreicht wurden. Maßnahmen zur Verbesserung von bestehenden Technologien und neue Verfahren müssen ebenfalls durch die Untersuchung des Abfalls während des Prozesses oder an wichtigen Schnittstellen bewertet werden.

Siloxane im Bio- und Deponiegas
© Institut für Abfall- und Kreislaufwirtschaft - TU Dresden (6/2010)
Siliziumorganische Verbindungen werden heutzutage in fast allen Industriebereichen eingesetzt und kommen so nach Ende der Nutzung der Produkte den Abfallbehandlungsanlagen zu. Bei der Vergärung von silicon- und siloxanhaltigen Materialien und der Deponierung von Abfällen gehen die flüchtigen siliziumorganischen Verbindungen in das hierbei entstehende Gas über. Dieses wird aufgrund des hohen Methangehalts in Blockheizkraftwerken (BHKW) energetisch verwertet.

Abfallwirtschaftliche Rekonstruktion von Altdeponien
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (6/2009)
Vor dem Hintergrund endlicher Rohstoffe und deren zukünftig anzunehmenden Preisanstieg kann der Rückbau von Deponien mittelfristig wirtschaftlich tragbar werden. Begünstigend wirken sich Menge und Energiegehalt an Stoffen zur energetischen Verwertung aus der Zeit vor der Getrennterfassung aus.

© IWWG International Waste Working Group (10/2007)
Municipal Solid Waste (MSW) constitutes a serious problem in urban areas. A waste hierarchy is often suggested and used in waste policy making. Different versions of the hierarchy exist, but in most cases the following order is suggested: 1. Reduce the amount of waste, 2. Reuse, 3. Recycle materials, 4. Incinerate with heat recovery, 5. Landfill. The first priority, to reduce the amount of waste, is generally accepted. However, the remaining waste needs to be taken care of as efficiently as possible. The hierarchy after the top priority is often contested and discussions on waste policy are intense in many countries.

© IWWG International Waste Working Group (10/2007)
Composting is the biological degradation of organic materials under controlled aerobic conditions (Haug, 1993). The available composting technologies range from the very simple to the very sophisticated and control possibilities vary very much between open (non-reactor) systems and in-vessel (reactor) systems. In-vessel technologies occur within a contained vessel, enabling the operator to maintain closer control over the process in comparison with other composting methods and avoiding some of the problems encountered with open systems, such as slow processing, large area requirements, variable temperatures throughout the compost, lack of guarantee of pasteurisation, or the potential to produce and release odours and bioaerosols. (Session A7: Composting (I))



 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners

Selbst Partner werden?
Dann interessiert Sie sicher das ASK win - win Prinzip:
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...