Bei der thermischen Nachverbrennung lässt sich Primärenergie sowohl aus der Nutzung der Abluft-Schadstoffe als auch aus dem Flüssigabfall einsparen. Ein Praxisbericht.
(04.05.07) Die senkrecht stehende V-TNV (,Thermische Nachverbrennung') von Eisenmann ist eine thermische Abluftreinigung mit optimiertem Brennersystem, neuartigen Wärmetauscherrohren und senkrechter Anordnung von Brennkammer und Wärmetauschereinheit. Sie spart Aufstellungsplatz, erzielt konstruktionsbedingt einen besseren Ausbrand und erlaubt eine im Vergleich zur "klassischen" liegenden TNV eine höhere Brennkammertemperatur. Daraus resultiert als wichtiger Vorteil, dass sie nicht nur zur Entsorgung von mit organischen Schadstoffen belastete Abluft, wie sie zum Beispiel bei chemischen Prozessen entsteht, sondern auch zur Verbrennung von flüssigen Reststoffen wie verschmutzten Lösemitteln eingesetzt werden kann. Neben besseren Reingaswerten bei geringerer Materialbeanspruchung ergibt sich so auch ein geringerer Verbrauch an Primärenergie. Darüber hinaus entstehen geringere Abfall-Entsorgungskosten.
Beispielsweise entstehen bei der Produktion von Isoliermaterial bis zu 17.000 Nm³/h entsorgungspflichtige Abluft mit einer Temperatur von max. 40 °C, einer Schadstoffkonzentration bis 8 g/Nm³, einem Schadstoff-Heizwert 29.930 kJ/kg. Außerdem fallen 70 bis 100 l/h Lösemittel-Kondensat an, das einen Heizwert von 19.000 kJ/kg besitzt und früher in einer separaten Brennkammer entsorgt wurde.
Die installierte vertikale Nachverbrennung V-TNV hat eine Nennleistung von 17.000 Nm³/h und eine Brennkammertemperatur von 850 °C. Die energiereichen Flüssigabfälle werden dabei direkt neben dem Brenner durch eine Lanze in die Brennkammer eingedüst. Erdgas dient lediglich als Zusatzbrennstoff. Die Energie aus der Brennkammer wird voll für den Produktionsprozess genutzt. Dazu durchströmt das heiße Reingas zunächst den Abluftvorwärmer und kühlt sich dabei auf ca. 540 °C ab. Anschließend wird es über einen Thermalöl-Wärmetauscher geführt, bei dem in der Produktion benötigtes Thermalöl mit einer thermischen Leistung von 1800 kW erzeugt wird. Das immer noch ca. 260 °C heiße Reingas passiert dann noch einen Warmwasser-Wärmetauscher zur Bereitung von 90 °C heißem Wasser für das betriebliche Warmwassernetz.
Neben der erheblichen Einsparung an Primärenergie kommt der Betreiber statt alternativ angebotener Kombinationen aus Brennkammer und regenerativer Nachverbrennung mit nur einer gemeinsamen Anlage für beide Aufgabenstellungen aus.
Copyright: | © Deutscher Fachverlag (DFV) | |
Quelle: | Mai 2007 (Mai 2007) | |
Seiten: | 1 | |
Preis inkl. MwSt.: | € 0,00 | |
Autor: | Dipl.-Ing. Michael Breuning | |
Artikel weiterleiten | Artikel kostenfrei anzeigen | Artikel kommentieren |
Significance of and Challenges for Flue Gas Treatment Systems in Waste Incineration
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Flue gas cleaning downstream of waste incineration plants had its origins in the increased construction and deployment of such plants to counter rising air pollution in the nineteen-sixties. Back then, the ever-growing burden on the environment caused lawmakers to start enacting emission limits for air pollution control. An unceasing series of environmental scandals and increasingly better analytical methods and measuring instrumentation led to a constant reduction of the emission limits and, consequently, to ongoing adjustment and further development of the necessary process stages in flue gas cleaning. As a result, today minimum emissions can be reached even under the challenging condition of deployment of a very inhomogeneous fuel (waste) and, hence, waste incineration today is no longer a key contributor to air pollution. Today, the need for flue gas cleaning is not called into doubt anymore and has long become a matter of course in the industry and in society at large. Apart from ensuring efficient elimination of noxious gases, the focus of today’s further developments is on issues such as energy efficiency, minimization of input materials and recovery and recycling of by-products from flue gas cleaning as valuable raw materials. These issues are also deemed to be key challenges, especially when it comes to selecting sites for new plants in such a manner that potential synergies can be exploited. Such aspects will also have to be considered in the plans for the predicted mega-cities of the future.
bifa-Text Nr. 51: Ressourcenschonung durch effizienten Umgang mit Metallen in bayerischen EFRE-Gebieten
© bifa Umweltinstitut GmbH (9/2012)
Durch die Analyse der Sichtweisen und Handlungsroutinen von Unternehmensvertretern im Kontext wirtschaftlicher und politischer Rahmenbedingungen können mit dieser Studie nun Handlungsstrategien zum ressourcenschonenden Einsatz von Metallen in Bayern bereitgestellt werden.
Use of a Fabric Filter for the Sorption – What Has to be Considered? – Experiences and Solutions –
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
In almost all flue gas cleaning systems installed at WtE-plants, the fabric filters are central components. A good example for this is the conditioned dry sorption process which is currently preferentially used in Europe. Within the filter not only the particles and the particulate heavy metals are separated from the gas flow, but also all reaction products resulting from the separation of gaseous pollutants such as HF, HCl, SOx, heavy metals and in this respect particularly Hg as well as PCDD/PCDF. In addition to this the fabric filter constitutes an excellent reaction chamber with high additive powder density in the filter cake.
Infrasound Solution for Fouled SCR and the Economizer in World’s Largest Waste-to-Energy Boiler
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Infrafone, with headquarters in Stockholm, Sweden, is using infrasound as a soot cleaning method and has plenty of experiences from various fuels and applications. The technical development has resulted in a product with much higher acoustic power than any other similar products on the market and acoustic modelling software that is unique. Infrasound cleaning increases the efficiency, the availability and the lifetime of industrial and marine boilers. In this text we start by describing the properties of infrasound and the product, while finishing by looking deeper into a couple of recent results obtained on waste to energy boilers.
New Developments for an Efficient SNCR Monitoring and Regulation System by Evaluating the NOx Mass Flow Profile
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
When the SNCR process was introduced first in the eighties of the last century the focus was directed towards applying this low cost technology mainly in combustion plants where only relatively low NOx reduction rates were required. In these types of boilers, like waste-to-energy plants (WtE), the required NOx limits < 200 mg/Nm3 could be maintained easily. Today, NOx limits of 100 mg/Nm3 and lower can be achieved and guaranteed at all operating conditions for these applications. Therefore, the SNCR process represents the Best Available Technology (BAT) today. As a result, more and more owners of waste-to-energy plants take advantage of the low costs at comparable performance and replace their existing SCR system with SNCR.