Microbial degradation of pesticides wastes in rustics devices type biobeds: The Biobacs

Derived from the system of biological beds proposed by Swedish researchers, called biobeds, and from the Bayer Crop Science system called Phytobac®, or the biobac, is a tank insulated from the subsoil and filled with a mixture of organic and mineral materials. Thanks to the developed biological processes in them, the biobeds can provide simple and attractive solutions for the confinement and treatment of pesticide wastes. A biobac can last for up to 8 to 10 years. Despite the increasing interest shown for these rustic processes of bioremediation, limited data is available on their efficiency and monitoring. Biobacs specifications may vary with environmental conditions, waste volume and composition and pesticide concentration. The cost and availability of “carrier materials” and organic substrates used to support microbial activity must also be considered (biomixes). All these aspects need to be considered when improving biobeds efficiency.

Further Author:
J.C. Fournier - UMR Microbiologie et Géochimie des sols

The objective of this study was to confirm the efficiency of biobacs evaluating certain aspects such as: the importance of biomixes and the study of the microbial mechanisms that are developed during the treatment process (stimulation or inhibition degradation). Numerous trials were first carried out under laboratory conditions to test the different materials which might be useful as biobed fillers. These were generally short experiments, using small samples and measuring the degradation of radioactive pesticides. Longer trials were performed in ten rigid crates containing 250 litres of substrate treated with one mixture of pesticides. In this case samples are removed periodically and the microbial activities determined from global or specific indicators such as biomass size or different catabolic capacities. The ability of soil micro-organisms from biobeds to mineralise each chemical was determined by radiorespirometry. Ecotoxicological assays risks were performed to the evaluation related to spreading the contents of biobacs in fields. The work results have confirmed the effectiveness of the devices. It was show that less of 1% of a mixture of 14 products herbicides representing more than 100 g of active ingredients disappeared from organic or aqueous extracts of different biomixes analyzed 15 months after the last waste application. The adaptation of the microbial populations to the mineralization of compounds was shown. The presence of fungicides or insecticides, or other pollutants (motors oil, detergent) did not modify the degrading activity of the microflora. Nevertheless a small residual phytotoxicity was observed in certain biobeds.



Copyright: © European Compost Network ECN e.V.
Quelle: Orbit 2012 (Juni 2012)
Seiten: 7
Preis inkl. MwSt.: € 7,00
Autor: Carmen Ponce-Caballero

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Anaerobic co-digestion of brown water with kitchen waste in decentralized, source-separation-based sanitation concepts
© European Compost Network ECN e.V. (6/2012)
Current centralized sanitation systems adopted by many developed and developing countries minimize the exposure of wastewater to citizens by flushing them away from households. However, the transportation process consumes large amounts of energy and water and gives rise to diluted sewage. In contrast, decentralized sanitation systems that treat source separated wastewaters would encourage the recycling of nutrients for agriculture, reduce household water consumption significantly and generate a source of clean energy. This study is initiated by an attempt to redefine urban communities as renewable resource recovery centres through the adaptation of “decentralized and source-separationbased sanitation concepts. Further Authors: R. Rajinikanth - Nanyang Technological University, Singapore Y. Mao - Nanyang Technological University, Singapore I. Ho - Nanyang Technological University, Singapore A. Ahamed - Nanyang Technological University, Singapore J. Y. Wang - Nanyang Technological University, Singapore

Multi-component heat and mass transport model for composting process: Experimental validation
© European Compost Network ECN e.V. (6/2012)
Composting consists in an aerobic process where the organic matter from wastes is biodegraded and converted into a stable granular material called compost. Even if composting is considered to be based on natural phenomenon, it is governed by very complex mechanisms, involving many parameters such as quality and accessibility of the nutriments for micro-organisms, local oxygen content, temperature of the medium, pH, moisture content, and so on (Mustin, 1987, Diaz et al., 2007;). These parameters directly affect biodegradation kinetics. Moreover, they are interdependent and impacted by the operating conditions, which make difficult the understanding of the process.

Predicting the biochemical methane potential of organic waste by near infrared spectroscopy
© European Compost Network ECN e.V. (6/2012)
The biochemical methane potential (BMP) evaluates the ultimate amount of methane produced by any given waste orbiomass under anaerobic conditions. This value is currently one of the most important parameter for the design andcontrol of anaerobic digestion plants and more specifically in co-digestion plants where a broad rang of substrates canbe treated. Further Authors: J. Doublet, C. Laroche, A. Ponthieux, J. Cacho-Rivero - Veolia Environnement Research and Innovation

Effect of ammoniacal Nitrogen on methanogenic metabolic pathways during MSW anaerobic digestion
© European Compost Network ECN e.V. (6/2012)
Municipal solid waste (MSW) represents an important renewable energy sources and the sustainable management of organic wastes is a major environmental and economic issue. The anaerobic digestion of MSW, which occurs inlandfills and methanization treatment plants, is a very complex process. The final step of the waste degradation, i.e.methanogenesis, which produces methane, leads to the production of a biogas that could be transformed into heat,electric power and fuel gas (renewable energy). In order to produce more efficiently this renewable energy and toenhance the degradation of the organic fraction of waste, bioreactors landfill and methanization treatment plants are twopromising management strategies. Further Authors: J. Epissard - Irstea M. Lemunier - Suez Environnement

Development of local municipal solid waste management in the Western Transdanubia region of Hungary
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Hungarian municipal solid wastes (MSW) management has developed tremendously over the past 15 years. More than 3,000 landfills and dumps had been closed, just to mention one improvement. However, still, lots of work is necessary to accomplish the EU’s ambitious aim of decreasing landfilling and increasing recycling and composting.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
 
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners
 

Selbst Partner werden?
 
Dann interessiert Sie sicher das ASK win - win Prinzip:
 
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
 
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.
 

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...