External influences on the energy efficiency of composting plants

With regard to energy efficiency as a major tool to reduce the use of fossil energies and to enable the conversion to a sustainable energy system, also biological waste treatment technologies have to improve their specific energy efficiency i.e. the energy used for a specific amount of biological waste utilised. To increase the energy efficiency of composting plants two general approaches seem to be viable.

The first approach is to take a look at the composting plants itself. What technology is used, which kind and which quantities of biological waste is utilised, and which amount of energy is used (see Figure 1 left side). Technologically similar plants show considerable differences in their specific energy efficiency. Based on that fact it should be possible to identify the factors relevant for the energy efficiency. The second approach investigates the composting plant not as an isolated phenomenon, but looks at it as part of the whole waste utilisation chain, from the arising of the waste till the application of the waste product. This chain strongly influences the size and technology of a plant and therefore its energy efficiency. Although this has little meaning for existing plants, it can explain some aspects of their current energy efficiency and might avoid unjust comparisons. Both approaches were followed in a still on-going research project with the goal to increase the energy efficiency of composting plants in Germany. To provide data for the internal efficiency factors a survey was undertaken. This survey covered all 440 composting plants subjected to the Federal German Compost Quality Assurance Organisation (BGK). These plants, which exclusively utilise source separated organic waste, represent 75% of the total composting capacity in Germany, which is at around 10 Tg – ten million tons – annually (BGK, 2011). For the second approach a mathematical model of the utilisation chain was developed and implemented with GoldSim® into a computer model. Data from the survey and from literature can be used to run specific scenarios, which compare the influences on the energy efficiency from internal and external factors. Figure 1 (right side) shows the general model structure, explained in detail on the following pages, positioning the composting plant within the utilisation chain.



Copyright: © European Compost Network ECN e.V.
Quelle: Orbit 2012 (Juni 2012)
Seiten: 6
Preis inkl. MwSt.: € 6,00
Autor: Dipl.-Forsting.(FH) M.Sc. Daniel Meyer
Prof. Dr.-Ing. Eckhard Kraft

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Energetic Utilization of Organic Waste and Residuals in Germany
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2014)
Biomass is currently the most important renewable energy source in Germany. Approximately two-thirds of the available residue potential in Germany is already used energetically, the thermal recovery with the use of waste wood predominates (Nelles et al. 2013). The energy potential of relevant organic waste and residuals such as waste wood (8%), straw (7%), manure (6%), industrial waste wood (4%) as well as bio- and green waste (1%) is estimated by the Agency for Renewable Energy up to 383 PJ/a in 2020 (AEE 2013).

Biomasseerzeugung als Regelungsgegenstand des Naturschutz-, Landwirtschafts- und Forstwirtschaftsrechts?
© Lexxion Verlagsgesellschaft mbH (3/2010)
Biomasse ist zunächst eine Sammelbezeichnung für organisches Material, das von der Natur erzeugt wird, also die Masse aller Lebewesen (Phyto- und Zoomasse), einschließlich deren Folge- und Nebenprodukte, Rückstände sowie Abfälle (vgl. im einzelnen § 2 BiomasseV1). Pflanzen wandeln die Sonnenenergie in Biomasse um; sie sind der Speicher der Natur für Sonnenenergie. Biomasse ist an sich ein CO2-neutraler Energieträger. Auch heute noch sind etwa 3 Milliarden Menschen in Entwicklungsländern ausschließlich auf Energie aus Biomasse in Form von Brennholz, Holzkohle oder Dung angewiesen.2 Diese Biomassenutzung „alter Prägung“ spielt in fortgeschrittenen Volkswirtschaften keine bedeutende Rolle mehr. Von zunehmender Relevanz ist Biomassenutzung „neuer Prägung“, insbesondere in Form von speziell kultivierten „Energiepflanzen“ und schnellwüchsigem „Plantagenholz“.

Life cycle assessment of waste wood used for energy production – Methodology and case studies
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
To assess the sustainability along the whole value chain, life cycle-based methodologies have been developed over the last years. Life Cycle Assessment (LCA) considers environmental impacts along supply chains, from extraction of raw materials to end-of-life of products (ASI 2006). The aim of this paper is to describe the use of LCA to assess the environmental impacts of the use of waste wood for energy production. Important methodological aspects on the use of LCA for the assessment of waste wood are presented using two different case studies from the H2020 projects STORY (Added value of STOrage in distribution sYstems) and TORERO (TORefying wood with Ethanol as a Renewable Output: large-scale demonstration).

Optimierung von Halmgutpellets aus Paludikultur mit Beimischungen von Holz
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
Paludikultur („palus“: lat. Sumpf) ist nasse Landwirtschaft auf Moorstandorten bei gleichzeitigem Erhalt des Torfkörpers als Kohlenstoffspeicher. Die aufwachsende Biomasse kann als regenerativer Energieträger genutzt werden. In der vorliegenden Studie wurde Biomasse aus Paludikultur im Technikumsmaßstab sowie im Praxisversuch pelletiert und prozessspezifische Kennwerte und Eigenschaften der Pellets analysiert. Die Bewertung erfolgt hinsichtlich der normativen Anforderungen nach DIN EN ISO 17225-6. Neben der Herstellung der Pellets war die brennstoffseitige Charakterisierung der Pellets zur bewertenden Einordnung der energetischen Verwertung Inhalt der Arbeit. Zur weiteren Optimierung wurde den einzelnen Paludikultur-Biomassen Kiefernholz zugemischt (Anteil von 50 und 80 %).

Bioabfall-Ist- und Potentialkarten für das Land Mecklenburg-Vorpommern
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
Die im Auftrag des Ministeriums für Wirtschaft, Bau und Tourismus Mecklenburg-Vorpommern durchgeführte Studie „Bioabfallbewirtschaftung in Mecklenburg-Vorpommern“ stellt den Stand der Bioabfallbewirtschaftung in Mecklenburg- Vorpommern im Jahr 2010 zusammen. Dargestellt werden Bioabfallarten wie Garten- und Parkabfälle, Landschaftspflegeabfälle, Nahrungs- und Küchenabfälle aus Haushaltungen und aus dem Gaststätten- und Cateringgewerbe sowie darüber hinausgehend organischer Abfall im Gewerbe. Die Ergebnisse der Studie sind Mengenangaben für das gesamte Bundesland Mecklenburg-Vorpommern bzw. in einzelnen Teilen auch Bioabfallmassen auf die alten Landkreise bezogen. Die Ergebnisse der Studie wurden für alle Landkreise mit Geo-Informationssystemen (GIS) aufbereitet, ausgewertet und visualisiert.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
 
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners
 

Selbst Partner werden?
 
Dann interessiert Sie sicher das ASK win - win Prinzip:
 
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
 
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.
 

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...