LCA of a collective biogas plant to manage manure in a French intensive farming and agroindustry area

This work has been carried out to evaluate the environmental impact through a Life Cycle Assessment (LCA) of a collective biogas plant incorporating pig slurry, cattle manure and waste from food processing industry. This collective biogas plant is actually a project located in an intensive farming and agro-industry area close to Rennes (France). Water from surface resources (river) located within this area is used to supply the towns located around for tap water. However, the excess of nitrogen locally applied on agricultural soils led to an increase of nitrate concentration in the water of the area and consequently, the water plant was recently closed. A collective manure management including biogas plant and post-treatment of digestate is seen as a possible solution to reduce the local pollution (mainly nitrate) through export of nitrogen. In this context, the aim of this study was to provide scientific elements on such solutions and to take into account the global environmental impact. So, a LCA has been realised to compare different scenarios of manure management according to an environmental point of view.

Further authors:
A. Collet; F. Beline, Irstea

Three scenarios of manure management are evaluated including a reference scenario representing the common practice and two other scenarios with collective biogas plant. The difference between the scenarios with collective biogas plant concerns the post-treatment of digestate: the post-treatment is composting in one scenario while it is evaporation process with concentration of digestate in the second one. These three scenarios make it possible to focus on the impact of transport which was precisely modelled for each scenario using Geographic Information System (GIS), on uses of energy from biogas and on treatment techniques and agronomical management of the digestate. In order to compare these three scenarios, a functional unit describes scenarios functions related to the practices of the area. The boundaries of this study begin to the storage until the export and application of digestate. The scenarios were modelled thanks to GaBi 4 software.The CML 2001 method was used to calculate environmental impacts. The scenario with biogas plant and evaporation seems to be the least impacting even if the differences between the two scenarios with biogas plant are small. Results analysis only focuses on three impacts categories: acidification potential, eutrophication potential and global warming potential. These three impact categories are judged relevant to provide answers to nitrogen excess, manure management and transportation importance. These results are examined through foreground and background boundaries and through generated and avoided impacts. For climate change, at the foreground, biogas plant by itself does not contribute to the reduction of greenhouse gases but the manure management plays a major role, through the reduction of storage time in farm. The LCA results clearly show, especially for global warming, the interest of the utilization of biogas thanks to energetic recovery through electricity and heat in terms of avoided impacts to the background. For the impact of acidification, the evaporation and concentration scenario presents the lowest impact mainly due to the reduction of ammonia emissions during land spreading (because of the acidification of the digestate during post-treatment). On the contrary, the composting scenario does not present a decrease of the impact compared to the reference because the decrease of ammonia emissions during storage are compensated by an increase of ammonia emissions during composting and land spreading. For eutrophication, we do not find a global trend. The scenario with evaporation shows a lowest eutrophication impact within the local area resulting from the nitrogen export but firstly the reduction of the impact is low in comparison with the quantity exported due to the increase of ammonia emissions and secondly it is just a potential impact transfer to another place. To identify potential impact transfers especially for local impact like eutrophication, it would seem wise to more precisely locate nitrogen releases.



Copyright: © European Compost Network ECN e.V.
Quelle: Orbit 2012 (Juni 2012)
Seiten: 8
Preis inkl. MwSt.: € 8,00
Autor: Dr. Lynda Aissani

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Produktion von Mikroalgen unter Nutzung von Abfällen aus Biogasanlagen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (12/2020)
Die Koppelung landwirtschaftlicher Biogasanlagen mit einer Mikroalgenproduktion führt zu einer energie- und klimaeffizienten Nutzung von Abfällen, nämlich Abwärme und AbCO2 aus der Verstromung des Methans im Blockheizkraftwerk. Hinzu kommt, dass keine Teller-Tank-Diskussion zu führen ist, da die Mikroalgenproduktion auch auf devastierten Flächen oder Dächern erfolgen kann. Die Mikroalge Spirulina bietet als nachhaltiges Nahrungs- und Futterergänzungsmittel vielseitige Einsatzzwecke und deutliche ernährungsphysiologische Vorteile.

The potential of insects in waste management – an introduction to possible applications
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
In order to remain competitive for achieving a circular economy we need to consider even more alternative pathways to close the loop for material and waste streams down to a nutritional level. A sustainable and value adding strategy is the intensified rearing and use of insects, in particular the use of edible species as human food and animal feed.

Anlagensicherheit von Biogas-/Anearobanlagen mit beispielhafter MSR/PLT
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
In einer Studie für das Umweltbundesamt in Dessau wurden von der Ingenieurgruppe RUK GmbH Muster von Verfahrensfließschemata und Rohrleitungs- und Instrumentenfließschemata (R- und I-Fließschemata) für Biogaserzeugungsanlagen getrennt nach Anlagen für besondere Einsatzstoffe nach Technische Regel für Anlagensicherheit (TRAS) 120 (im Folgenden als Typ B bezeichnet) und den anderen der TRAS 120 unterliegenden Anlagen (im Folgenden als Typ A bezeichnet) erstellt. Hierzu sei auf die Literatur verwiesen.

Weiterentwicklung des organischen Stoffstrommanagements im Landkreis Nordhausen – Biogas, Brennstoff, Kompost
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2019)
Im noch umzusetzenden Heizkonzept soll die Wärmeherstellung für den Betriebshof der Stadtwerke Nordhausen und zweier angrenzender Wohnblöcke mit insgesamt ca. 1.500.000 kWh p. a. durch Verbrennung des Brennstoffs aus Grüngut erfolgen. Durch die Ersetzung fossiler Energieträger durch erneuerbare leistet die Entsorgungswirtschaft im Landkreis Nordhausen einen weiteren positiven Klimabeitrag.

Aufwertung von Biogas durch Power-to-Gas mit mikrobiologischer Methanisierung - Erste Erfahrungen mit der Pilotanlage in Altenstadt, Bayern
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2018)
Die Bioabfallvergärungsanlage der Öko-Power GmbH verwertet in acht Fermentern täglich 130 m³ Abfall. Dieser setzt sich aus Küchen- und Kantinenabfällen sowie Produktionsabfällen aus Molkereien und weiteren Marktabfällen zusammen.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
 
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners
 

Selbst Partner werden?
 
Dann interessiert Sie sicher das ASK win - win Prinzip:
 
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
 
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.
 

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...