Saugrohroptimierung zur Leistungssteigerung einer kleinen S-Turbine

Das Saugrohr einer Niederdruckanlage verbindet die Turbine mit dem freien Unterwasserspiegel. Gleichzeitig wandelt es einen Teil der hinter dem Laufrad vorherrschenden Strömungsenergie in Druckenergie um, wodurch die Leistung der Turbine wesentlich gesteigert wird. Eine Leistungssteigerung erfolgt jedoch nur, wenn alle Komponenten aufeinander abgestimmt sind. Das Saugrohr einer kleinen S-Turbine wird dahingehend für einen großen Betriebsbereich optimiert. Zugleich werden instationäre Phänomene analysiert, um den Durchfluss betriebssicher zu erhöhen.

Das Saugrohr einer hydraulischen Turbine erfüllt zwei grundlegende Funktionen. Zunächst stellt es das Verbindungselement zwischen der Turbine und dem Unterwasser des Kraftwerks dar. In Abhängigkeit der verbauten Maschine sind mit dieser Verbindung häufig eine oder mehrere baulich bedingte Umlenkungen der Strömung verbunden. Im Fall von horizontalachsigen Kaplan- oder Propellerturbinen muss die Strömung meist unter dem stromab aufgestellten Generator in das Unterwasser geleitet werden. Hierzu lenkt ein erster Saugrohrkrümmer die Strömung diagonal nach unten, während ein zweiter Krümmer auf Höhe der Sohle wieder einen horizontalen Zulauf in das Unterwasser garantiert. Diese doppelt gekrümmten Saugrohre verleihen den zugehörigen Anlagen den charakteristischen Namen S-Turbine oder S-Saugrohr [1].

In seiner zweiten Funktion wandelt das Saugrohr einen Teil der am Laufradaustritt vorherrschenden kinetischen Energie in Druckenergie um. Eine Umwandlung dieser Art korreliert direkt mit einer Verlangsamung der Strömung und somit mit der durchströmten Querschnittsfläche, weshalb ein Saugrohr – zumindest in Teilen – einem Diffusor gleicht. Die Diffusorwirkung des Saugrohrs führt rückwirkend zu einer Absenkung des statischen Drucks in der Laufradaustrittsebene. Da das Druckniveau stromauf des Laufrads vom Oberwasser bestimmt wird, erhöht sich dank des Saugrohrs die über dem Laufrad anliegende Druckdifferenz und letztlich die Leistungsabgabe der Turbine. Eine Verringerung der Strömungsgeschwindigkeit hat zusätzlich den positiven Effekt, dass die quadratisch mit der Geschwindigkeit korrelierenden Austrittsverluste reduziert werden können [2].



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft - Heft 09 (September 2019)
Seiten: 4
Preis: € 10,90
Autor: Fabian Hankeln
Prof. Dr.-Ing. Stefan Riedelbauch

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Hydraulische Entwicklung einer Axialmaschine – Vergleich zwischen Simulation und Messung
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2015)
Die Leistungsfähigkeit von Niedergefällsmaschinen hängt stark von der Saugrohrströmung ab. Um das Betriebsverhalten solcher Turbinen besser zu verstehen, wird eine Propellerturbine mit 4 Laufradschaufeln mit zwei Turbulenzmodellen simuliert und die Ergebnisse anschließend mit experimentellen Messergebnissen verglichen. Die instationären Simulationen eines Volllastbetriebspunktes werden mit einem RANS-Turbulenzmodell und mit einem hybriden RANS-LES-Modell durchgeführt. Außerdem wird für beide Turbulenzmodelle ein Vergleich des Strömungsfeldes im Saugrohr durchgeführt.

Tiefspeicherdimensionierung unterirdischer Pumpspeicherwerke – Numerische Modellierung
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2014)
Pumpspeicherwerke stellen eine großmaßstäbliche Möglichkeit der Energiespeicherung dar. Durch neuartige Konzepte sollen topographieunabhängige Bauweisen ermöglicht werden. Eines dieser Konzepte sieht eine Anordnung von unterirdischen Speichereinheiten als Unterbecken vor. Hierfür wurde an der RWTH Aachen ein numerisches 3-D-Modell zur hydrodynamischen Optimierung entwickelt und anhand verfügbarer experimenteller Untersuchungen kalibriert. Inhalt dieser Arbeit ist der Aufbau des numerischen Modells sowie die Simulation und Validierung eines Füllprozesses.

Unterirdische Pumpspeicherwerke – eine Alternative?
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (2/2014)
Die Planung und der Bau von Pumpspeicherwerken werden heutzutage durch Landnutzungskonflikte erschwert. Als Alternative bieten sich u. a. unterirdische Pumpspeicherwerke an, deren Machbarkeit bislang jedoch weder technisch, wirtschaftlich noch rechtlich ausreichend untersucht wurde. In einem ersten Schritt wurden daher die hydraulischen Prozesse für verschiedene Geometrien auf der Grundlage einer hybriden Modellierung als eine wesentliche Schlüsselrandbedingung für eine mögliche technische Machbarkeit analysiert.

Elektro- und Leittechnik des neuen Wasserkraftwerks Rheinfelden
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (6/2013)
In den Konzessionen für die neue Kraftwerksanlage ist vorgegeben, dass die erzeugte Energie je zur Hälfte in das deutsche und Schweizer Netz abgegeben werden muss. Deshalb wurden Energieableitungen sowohl in die Schweiz als auch nach Deutschland erstellt. Die beiden Netze dürfen allerdings nicht miteinander verbunden werden. Da alle Prozesse mit Steuerungen und Regelungen ausgerüstet sind, kann das Kraftwerk vollautomatisch betrieben werden.

Ökologische Maßnahmen im Umfeld des neuen Wasserkraftwerks Rheinfelden
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (6/2013)
Im Rahmen einer zweistufigen Umweltverträglichkeitsprüfung wurden zahlreiche Ausgleichsmaßnahmen festgelegt. Die Hälfte der charakteristischen Stromschnellen im Rhein sollte erhalten bleiben. Gefordert wurde überdies ein naturnahes Fischaufstiegs­ und Laichgewässer am deutschen Ufer sowie eine Fischaufstiegsanlage auf der Schweizer Seite. Ein provisorischer Raugerinne-­Beckenfischpass wurde als fester Bestandteil in die Anlage integriert. Am Rheinufer sowie am Schloss Beuggen wurden zahlreiche Maßnahmen zur ökologischen Aufwertung umgesetzt.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?