Emissionen aus Biogasanlagen – praktische Reduktion durch Katalysatortechnik in BHKW

Derzeitig existieren nahezu 6.000 Anlagen in Deutschland, die aus landwirtschaftlichen Reststoffen und nachwachsenden Rohstoffen Biogas erzeugen und in Blockheizkraftwerken (BHKW) das Biogas zu Strom und Wärme umwandeln. Bei der Verbrennung in BHKW bleibt jedoch eine geringe Menge des Brenngases Methan unverbrannt übrig und gelangt in die Atmosphäre. Dort angekommen ist es im maßgeblichen Umfang am Treibhausgaseffekt beteiligt.

Derzeit sind etwa 6.000 Biogasanlagen in Deutschland in Betrieb. Ein Teil dieser Anlagen verfügt über einen Katalysator zur Abgasnachbehandlung. Hauptsächlich dienen diese der Reduzierung des Formaldehyds zur Unterschreitung des TA-Luft Grenzwertes von 60 mg/m³ bzw. 40 mg/m³ und damit zum Erhalt des Formaldehydbonus nach dem EEG. Darüber hinaus wird vermehrt versucht, auch Methan, welches ebenfalls im Abgasstrom der Biogas-BHKW in geringen Mengen enthalten ist, auf katalytischem Weg umzusetzen. In Dänemark und in den Niederlanden gibt es, im Gegensatz zu Deutschland, bereits verbindliche Kennwerte. Katalysatoren, die gleichzeitig Methan und Formaldehyd im Temperaturfeld des BHKW-Abgasstroms reduzieren können, sind derzeit noch nicht vorhanden. Das Forschungsvorhaben zur Reduzierung von Emissionen aus Biogasanlagen (REMISBIO), gefördert durch das BMU-Programm „Energetische Biomassenutzung“ im Rahmen der nationalen Klimaschutzinitiative, versucht eben diese Wissens- und Technologielüke zu schließn. Die Schwierigkeit dabei liegt nicht nur in der eigentlichen katalytischen Umsetzung sondern auch bei den im Abgas enthaltenen Schadund Stöstoffen.



Copyright: © Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock
Quelle: 5. Rostocker Bioenergieforum (November 2011)
Seiten: 11
Preis inkl. MwSt.: € 0,00
Autor: M. Eng. Dipl.-Ing. (FH) Eric Billig
M.Sc. René Bindig
Dr. Ingo Hartmann
Dr.-Ing. Jan Liebetrau

Artikel weiterleiten Artikel kostenfrei anzeigen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Combining laser cleaning and LIBS: fast and precise recycling of metal alloys
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
In respect of a limited amount of raw material, costs, CO2 and waste reduction, high precision metal recycling is getting more and more important these days. Contaminations of the melt with unwanted or outright detrimental elements (e.g. C, S, P, Cu or Pb in steel, Cr or Ni in low-alloy steels, Li in aluminium and so forth) are a huge liability toward the ‘‘alloy-to-alloy’’ recycling goal and essentially the only option in this case, is either costly dilution with clean raw materials, downgrading or worst case scenario discarding.

Applicability of multivariate data analysis to improve the sorting degree of recycled polyethylene
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
The Circular Plastic Alliance Declaration of the European Commission targets the us-age of 10 million tons of recycled plastic per year into new plastic products in Europe by 2025 (European Commission 9/20/2019). To assist this objective this work focuses on the improvement of mechanical sorting of polyethylene (PE).

Lithium-Ionen-Batterien: Anforderungen an das Recyclingverfahren der Zukunft
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der Einsatz von wertvollen und teilweise kritischen Rohstoffen wie Kobalt, Nickel, Mangan und Lithium in Kathodenmaterialien sowie die prognostizierten Marktentwicklungen machen das Recycling von Lithium-Ionen-Batterien zu einem abfallwirtschaftlich relevanten Thema. Dieser Beitrag beleuchtet die Entwicklung und Vielfalt dieser Kathodenmaterialien und leitet daraus Anforderungen an zukünftige Aufbereitungs- bzw. Recyclingverfahren ab. Die schnelle Weiterentwicklung der Zellchemismen hin zu nickelreichen Kathodenmaterialien stellt bestehende Verfahren vor wirtschaftliche Probleme und unterstreicht zusätzlich die Notwendigkeit eines flexiblen Prozesses, welcher mit einer variierenden chemischen Zusammensetzung des Abfallstromes zurechtkommen muss.

Circularity by Design – Können temporäre Wohnformen nachhaltig gestaltet werden?
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Die Umweltauswirkungen verschiedener Wirtschaftssektoren sind angesichts der drohenden Auswirkungen des Klimawandels in den Fokus gerückt. Die Baubranche gilt als ein Sektor mit besonders großen Auswirkungen: Nach Angaben der Europäischen Kommission ist der Bau und die Nutzung von Gebäuden in der EU für fast die Hälfte aller gewonnenen Materialien und des Energieverbrauchs, sowie für etwa ein Drittel des Wasserverbrauchs verantwortlich (European Commission 2014). Daher wurde der Bausektor im Aktionsplan für die Kreislaufwirtschaft als einer der vorrangigen Bereiche definiert (European Commission 2015). In diesem Konferenzbeitrag steht temporäres Wohnen, und damit ein Teilbereich des Bausektors im Mittelpunkt. Darunter versteht man die Bereitstellung von Unterkünften für Menschen für einen bestimmten, zeitlich begrenzten Zeitraum an einem bestimmten Ort.

Anforderungen an den emissionsarmen Betrieb von Kompostanlagen im Hinblick auf das BVT-Dokument
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2016)
Im Rahmen eines Projektes des Umweltbundesamtes mit der Stadt Wien wurden unter Einbindung von Stakeholdern und Anlagenbetreibern wesentliche Anforderungen an einen emissionsarmen Betrieb von großen Kompostierungsanlagen formuliert. Diese Anforderungen wurden unter Berücksichtigung der Richtlinie zum Stand der Technik der Kompostierung und auf Basis von Best-Practice-Beispielen österreichischer Kompostierungsanlagen zusammengestellt.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?