Schatzgrube Elektro-Auto: Projekt untersucht Recycling von Leistungselektronik aus Elektrofahrzeugen

Elektrofahrzeuge werden künftig zunehmend am Straßenverkehr teilnehmen. Daher ist absehbar, dass zeitversetzt auch mehr E-Mobile recycelt werden müssen. Hierbei liegt das Augenmerk besonders auf der Leistungselektronik, denn diese enthält zum Teil wertvolle Metalle, die weltweit nicht unbeschränkt zur Verfügung stehen. Diese sollten in spezialisierten Elektronikrecyclinganlagen zurückgewonnen werden.

Foto: TU Clausthal(26.03.2018) Die Zukunft der individuellen Mobilität mittels Pkw in Deutschland hat seit der UN-Klimakonferenz 2015 in Paris und dem im November 2016 vorgestellten Klimaschutzplan 2050 eine feste Zielrichtung. Um die bis 2030 vorgegebenen ambitionierten Treibhausgasreduktionsziele im Mobilitätssektor von 42 Prozent zu erreichen, müssen treibhausgasneutrale Technologien ausgebaut werden. Eine tragende Rolle wird hier die Elektromobilität spielen. Ein deutlicher Anstieg des Absatzes an Elektrofahrzeugen ist zu erwarten. Damit verbunden wird zeitversetzt das Aufkommen an Elektrofahrzeugen, die recycelt werden müssen, ansteigen. Dies beinhaltet auch die verwertbaren Leistungselektronikmodule, die in jedem Elektrofahrzeug als wichtiges Bauteil für das Energiemanagement eingesetzt werden.
Spezielle Recyclinganlagen für elektronische Bauteile aus Fahrzeugen mit Elektroantrieb können strategisch wichtige Metalle, besonders Edelmetalle wie Gold, Silber und Palladium, zu 90 Prozent zurückgewinnen. Das zeigt der Vergleich mit dem herkömmlichen Recycling im Auto-Schredder, wo ein Großteil der Edelmetalle (75 Prozent und mehr) verloren geht. Das vom Öko-Institut in Darmstadt koordinierte Projekt „Elektrofahrzeugrecycling 2020 – Schlüsselkomponente Leistungselektronik“ (ElmoReL 2020) untersuchte die Optimierung des Recyclings der Leistungselektronik von Elektrofahrzeugen...

Unternehmen, Behörden + Verbände: Öko-Institut; Electrocycling GmbH (Goslar); TU Clausthal (Clausthal-Zellerfeld); Volkswagen AG (Wolfsburg); PPM Pure Metals GmbH (Langelsheim)
Autorenhinweis: Dr. Winfried Bulach, Öko-Institut Darmstadt u. Anette Weingärtner, Berlin
Foto: TU Clausthal



Copyright: © Deutscher Fachverlag (DFV)
Quelle: Nr. 1 - März 2018 (März 2018)
Seiten: 3
Preis inkl. MwSt.: € 3,00
Autor: Dipl.-Ing. Winfried Bulach
Anette Weingärtner

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Environmental effects of fireworks with special consideration of plastic emissions
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
In Germany, about 133 million Euro are spent annually for New Year’s Eve fireworks, which result in 38,000 to 49,000 Mg of total firework mass. By a com-bination of desk research with official fireworks approval statistics, a customer survey, dismantling experiments with fireworks debris and with packaging characterisation, the total nationwide polymer emission was estimated to be 3,088 Mg. Out of this total mass, a projected polymer debris mass of 534 Mg was identified, and about 270 Mg of polymer packaging material. The remaining 2283 Mg of polymer mass are parts that eventually may remain at the launching site.

Co-Processing von Ersatzbrennstoffen: Beitrag der Zement-industrie zur Recyclingrate
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der Einsatz von Ersatzbrennstoffen (EBS) gewinnt in der Zementindustrie immer mehr an Bedeutung. In Österreich besonders hervorzuheben sind dabei kunststoffrei-che EBS, die mittlerweile den größten Anteil der eingesetzten Ersatzbrennstoffe aus-machen (Mauschitz 2019; Sarc et al. 2020). Auch die Zementindustrie könnte dadurch einen Beitrag zur Erreichung der im EU Kreislaufwirtschaftspaket festgelegten Recyclingziele leisten, sofern der recycelte bzw. in den Klinker eingebundene Anteil des EBS auch rechtlich als stoffliches Recycling anerkannt und den EU Recyclingzielen zugerechnet wird. An der Montanuni-versität Leoben wurde daher mittels Analysen des Aschegehalts und der Aschezu-sammensetzung damit begonnen, eine wissenschaftlich fundierte Datengrundlage für diese Fragestellung zu schaffen.

Entwicklungen auf dem Gebiet der sensorgestützten Sortierung von Müll bei Binder+Co
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der Einsatz modernster Maschinen in der Aufbereitung und Recycling von primären und sekundären Rohstoffen ist in der heutigen Zeit nicht mehr wegzudenken. Binder+Co kann in diesem Bereich auf eine 125 Jahre lange Erfahrung zurückblicken und ist Pionier im Bereich der sensorgestützten Sortierung von Schüttgütern. Die ersten Sortierer dieser Art wurden bereits Mitte der 1980er ausgeliefert (Kalcher 2011). Seither wurden die Sortierer konsequent hinsichtlich Sensorik und Effektorik weiter-entwickelt und decken alle gängigen Sensortechnologien ab. Dadurch ist die Produktlinie namens CLARITY, welche die optischen Sortierer von Binder+Co im Bereich Recycling abdeckt, seit Jahrzenten eine etablierte Technologie.

Untersuchungen zur mechanischen Entschichtung von Elektroden aus Lithium-Ionen-Altbatterien
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der weltweite zunehmende Einsatz von LIB führt auch zu einer steigenden Menge von Produktions- und Konsumptionsrückständen, die unter Berücksichtigung der ökologischen und wirtschaftlichen Nachhaltigkeit entsorgt werden müssen. Idealerweise werden die Materialien aus den Neuschrotten oder Altbatterien in die Produktion neuer Batterien zurückgeführt. LIBs enthalten werthaltige Metalle, wie Aluminium, Eisen, Kupfer, Lithium, Kobalt, Nickel und Mangan. Diese Metalle, ausgenommen Eisen, bilden hauptsächlich die Stromleiterfolien und Beschichtungen der Elektroden. Aktuell werden Lithium-Ionen-Batterien industriell in Recyclingverfahren behandelt, die auf energie- und kostenintensiven pyrometallurgischen oder hydrometallurgischen Prozessen mit begrenzten Kapazitäten, niedrigen Recyclingraten und einer wirtschaftlichen Abhängigkeit von Kobalt und Nickel als Kathodenmaterialien basieren. Bei diesen Prozessen werden vornehmlich Kobalt, Nickel und Kupfer zurückgewonnen, wohingegen Lithium, Aluminium und Mangan in der Schlacke verbleiben und durch Verfüllung verwertet werden. In Zukunft wird angestrebt, die gesetzliche Recyclingeffizienz von 50 Masseprozent zu erhöhen, und speziell die Kathodenbeschichtungsmaterialien aus Produktionsrückständen direkt für neue Batterieanwendungen wiederzuverwenden (Werner et al. 2020).

Recycling von Al-Schrotten mit hohem Organikanteil
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Beim Al-Recycling sind zwei grundlegende Verfahrensvarianten zu unterscheiden. Umschmelzwerke (Remelter) dienen der Produktion von Knetlegierungen durch Ein-satz wenig verunreinigter Schrotte. Stärker kontaminierte Materialien, zu denen auch Al-Schrotte mit hohem Organikanteil zählen, gelangen unter Verdünnung mit Reinaluminium und Zusatz von Salzen in Schmelzhütten (Refiner), wo Gusslegierungen hergestellt werden. Im Rahmen des Beitrags erfolgte die Erläuterung von industriell eingesetzten Verfahren zum Recycling von Al-Schrotten mit hohem Organikgehalt. In diesem Zusammenhang wird auch auf die Notwendigkeit von ausreichenden Industrieanlagen zum Schließen der Kreisläufe´eingegangen.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?