Einsatzmöglichkeiten einer übergeordneten Steuerung beim automatisierten Betrieb von Staustufenketten

Automatisierte Wasserhaushaltsregelungen leisten einen wesentlichen Beitrag zum sicheren Betrieb von Stauanlagen, werden jedoch meist nur lokal eingesetzt. Koordinierende Steuerungssysteme für mehrere hintereinanderliegende Stauanlagen ermöglichen das Erreichen übergeordneter Ziele, wie beispielsweise die Vergleichmäßigung eines unruhigen Abflussgeschehens oder die Umsetzung unterschiedlicher Strategien zur Stromerzeugung. Mit Hilfe umfangreicher Simulationssysteme
können übergeordnete Steuerungsmodule für vielfältige und komplexe Aufgabenstellungen erarbeitet sowie das Prozessverständnis vertieft werden.

1 Einführung

Beim Betrieb von Wasserkraftanlagen ist eine Unterstützung des Bedienpersonals durch automatisierte, lokale Wasserhaushaltsregelungen heutzutage üblich. Ein koordinierter Betrieb einer Stauhaltungskette durch eine übergreifende Steuerung wird jedoch eher selten eingesetzt, obwohl komplexe Betriebsziele,wie beispielsweise die Beruhigung eines stark variierenden Abflussgeschehens, mit lokalen Reglungen allein in der Regel nicht umzusetzen sind. Das vielfältige Potenzial übergeordneter Steuerungen wird anhand unterschiedlicher Beispiele aus den Bereichen der Abflussvergleichmäßigung, der Schulung von Personal sowie der Bereitstellung spezieller Stromprodukte aufgezeigt. Diese Beispiele sind in Bild 1 räumlich verortet, das aus dem weiten Betätigungsfeld der Autoren modellierte Flussabschnitte zum Betrieb von Staustufen mit Fokus auf Bayern mit einem Umfang von 82 Staustufen und einer Fließstrecke von ca.1 086 km zeigt. Weitere Untersuchungen zu den verschiedenen Flussabschnitten werden in Dickel et al. [1] und Theobald et al.[8] vorgestellt.

2 Methoden und Werkzeuge

Zur Bearbeitung der vielfältigen Aufgabenstellungen verwenden die Autoren ein selbst entwickeltes, umfangreiches Simulationstool,welches Wasserbau und Regelungstechnik verbindet und bereits für zahlreiche Stauanlagen an unterschiedlichen Flusssystemen eingesetzt wurde [2], [4], [6], [7]. Kernbaustein ist ein eindimensionales, instationäres hydrodynamisch-numerisches (HN-) Verfahren zur Berechnung der Strömungsverhältnisse in Fließgewässern, mit dem die Wechselwirkungen zwischen Zufluss, Abfluss und den Wasserständen quantifiziert sowie die Betriebsvorgaben an den Staustufen hinsichtlich ihrer Wirkung auf Wasserstand und Abflussüberprüft werden können. Dieses HN-Verfahren wurde als Blockbaustein in Matlab/Simulink implementiert und verfügt dadurch über vielfältige Schnittstellen zur Anbindung weiterer Module.



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft - Heft 04 (April 2022)
Seiten: 8
Preis inkl. MwSt.: € 10,90
Autor: Dipl.-Ing. Swantje Dettmann
Prof. Dr.-Ing. Stephan Theobald
Dipl.-Ing. Ute Theobald

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Gerechte Verteilung limitierter Wasserressourcen in Entwicklungs- und Schwellenländern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2020)
In vielen strukturschwachen Regionen der Welt führen limitierte Wasserressourcen zu einer defizitären Wasserversorgung. Da herkömmliche Verteilsysteme für einen bedarfsdeckenden Betrieb konzipiert sind, führt ein nicht bedarfsdeckender Betrieb zu einer hydraulisch bedingten ungerechten Wasserverteilung. Dieser Beitrag beschreibt ein Verteilsystem, das auf Basis einfacher Lösungen auch bei einem nicht bedarfsdeckenden Betrieb eine gerechte Wasserverteilung ermöglicht. Die Umsetzung und Evaluierung erfolgte in einer Karstregion im Norden Vietnams.

Automatisierter Staustufenbetrieb auf Basis lokaler Wasserhaushaltsregelungen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (4/2022)
Der sichere Betrieb von Stauanlagen mit Einhaltung zahlreicher, teils konträrer Anforderungen hinsichtlich Stromerzeugung, Schifffahrt, Hochwasserschutz und ökologischer Aspekte stellt für die Betreiber eine komplexe Aufgabe dar, bei der das Wartenpersonal zunehmend durch automatisierte Wasserhaushaltsregelungen unterstützt wird. Mithilfe einer gekoppelten Simulation von Hydrodynamik und Regelungstechnik können die lokalen Wasserhaushaltsregelungen an zahlreiche Fragestellungen und die speziellen Gegebenheiten jeder einzelnen Stauanlage angepasst werden.

Beckenrampen - Dimensionierung und Stabilität bei Hochwasser
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (4/2022)
Es wird eine aus Modellversuchen abgeleitete Methode für die Dimensionierung der Steingrößen von Beckenrampen bei Hochwasser vorgestellt. Der Anwendungsbereich erstreckt sich auf Gefälle zwischen 1 % und 4 % sowie einem mittleren Riegelabstand von größer als 3,25 m. Die Dimensionierungsregeln sind auch für hochbelastete Bauwerke mit spezifischen Abflüssen bis zumindest 25 m³/(s ∙ m) geeignet.

Staustufenmanagement als Teil des Hochwassermanagements - Modellierung des bayerischen Inns
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (4/2022)
Bei staugeregelten Flüssen stellt sich insbesondere nach großen Hochwasserereignissen, wie z. B. dem Hochwasser 2013, die zentrale Frage, ob es durch eine intelligente Steuerung möglich ist, die Stauräume für den Hochwasserrückhalt zu nutzen, um den Hochwasserscheitel zu reduzieren. Die durchgeführten Untersuchungen zeigen, dass für den Inn ein Potenzial zur Scheitelminderung gegeben ist. Sie verdeutlichen jedoch auch, dass hierzu ein gutes Prozessverständnis zur Wechselwirkung zwischen Betrieb der Staustufen und Strömungsverhalten des Flusses sowie umfangreiche Analysen und Sensitivitätsuntersuchungen zu einer Vielzahl von Parametern und Messwerten erforderlich ist. Nur durch Berücksichtigung der genannten Aspekte in einem komplexen Modell ist es möglich, letztendlich praxisrelevante Steuerungsoptionen für den realen Betrieb zu entwickeln.

Das ehemalige Revierelektrizitätswerk Freiberg im Drei-Brüder-Schacht
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (1/2022)
Die Nutzung der Wasserkraft im Bergbau hat lange Tradition. Durch das Anlegen von Speichern und Wasserläufen war es auch möglich, die Wasserkraft neben dem Betreiben von Arbeitsmaschinen für die elektrische Energiegewinnung zu nutzen. Am Beispiel des Kavernenkraftwerkes Drei-Brüder- Schacht in Freiberg wird im Artikel beschrieben, wie eine solche Anlage schon vor über 100 Jahren entworfen, gebaut und genutzt wurde. Der Betrieb wurde eingestellt, aber zahlreiche Bemühungen hatten die Wiederinbetriebnahme zum Inhalt. Die derzeitige Anlagensituation wird aufgezeigt und ein Ausblick über die weitere Entwicklung gegeben.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?