Resource Recovery from Waste Using the Input Flexibility of Waste Gasification Technology

Nowadays, gasification of waste or biomass is becoming the great interest all over the world. Especially, gasification of municipal solid waste (MSW) has been well-researched in Japan. The development of MSW gasification technology was started in the 1970s in Japan because of oil crisis. Several technologies have been researched and developed. The Direct Melting System (DMS), which is the gasification and melting technology developed by Nippon Steel & Sumikin Engineering Co., Ltd., is one of the developed waste gasification technologies in this era. This technology was introduced for commercial use in Kamaishi City, Japan in 1979. As well as this waste technology, other gasification technologies have been developed for commercial use and installed.

A detailed description of the DMS has already been given previously. Waste is charged into the gasifier without any pre-treatment, which is different from other gasification technologies, such as fluidized bed gasifiers. Waste is directly charged into the gasifier from the top with coke and limestone. The gasifier consists of three mainparts: a drying and preheating zone, a thermal decomposition zone and a combustion and melting zone. Waste is gradually dried and preheated in the upper section (the drying and preheating zone). Combustible waste is thermally decomposed in the second zone and syngas is discharged from the top of the gasifier. The syngas, which mainly contains carbon monoxide, carbon dioxide, hydrogen, methane, hydrocarbons andnitrogen, is transferred to the combustion chamber in the downstream of the gasifier and then completely burned. Incombustibles descend to the combustion and melting zone (1,000 to 1,800 ºC) at the bottom and are melted with the heat generated by coke burning. Molten materials are intermittently discharged from a tap hole, quenched with water and magnetically separated into slag and metal. The sensible heat in the flue gas discharged from the combustion chamber is recovered by a boiler and power is generated by a steam turbine.



Copyright: © Thomé-Kozmiensky Verlag GmbH
Quelle: Waste Management, Volume 6 (September 2016)
Seiten: 12
Preis inkl. MwSt.: € 0,00
Autor: Nobuhiro Tanigaki
Ryo Makishi
Toshimi Nagata

Artikel weiterleiten Artikel kostenfrei anzeigen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Overview of the Pyrolysis and Gasification Processes for Thermal Disposal of Waste
© Thomé-Kozmiensky Verlag GmbH (9/2016)
Thermal treatment of waste started in the 1870s in England with the first waste incineration plants and this technology was in short time adopted by many industrialised countries. Starting in the late 1970s waste incineration was blamed for emission of toxic compounds, in particular of dioxins, and public pressure initiated the decree of more and more stringent air emission standards in all countries which, again, induced significant improvement of the environmental performance of waste incineration.

Initial Operating Experience with the New Polish Waste-to-Energy Plants
© Thomé-Kozmiensky Verlag GmbH (9/2016)
Waste-to-Energy plants are an integral part of modern municipal Waste Management Systems. Today recycling and energy recovery from waste are the only methods of dealing with municipal waste. This is demonstrated by Waste Management Systems in countries such as Germany, Sweden, the Netherlands, Belgium, Denmark and Austria, where the municipal waste management is limited solely to recycling and energy recovery from waste. The currently discussed concept of the latest circular economy package can hardly change anything in this matter. Poland, as one of the leaders among the new EU member states (since 2004), has still a lot to do within the scope of recycling and waste-to-energy.

New Waste-to-Energy Facility Energy Works Hull, United Kingdom
© Thomé-Kozmiensky Verlag GmbH (9/2016)
Energy Works Hull (the Project) is a milestone project for the UK’s waste and renewable energy sector. It will be one of the largest gasification facilities receiving MSW in the UK, indeed in Europe. It is one of the first advanced conversion technology Projects to receive its renewable electricity subsidies through a Contract for Difference, the mechanism by which the UK Government determined to move from Renewable Obligation Certificates following its Electricity Market Reform process. It also plays a significant part of the urban regeneration of the City of Hull. The level of community engagement and benefit has resulted in the project receiving a GBP19.9M grant from the European Union’s Regional Development Fund.

Enhancing of the Energy Efficiency of an Existing Waste Incineration Plant by Retrofitting with a District Heating Network
© Thomé-Kozmiensky Verlag GmbH (9/2016)
The German Cycle Economy Act (Kreislaufwirtschaftsgesetz KrWG) and discussions on the turn of local energy policies led to intensive examination of options for optimising utilisation of heat produced by the waste incineration plant (MKW) in Weißenhorn. This has been carried out by the waste management firm(Abfallwirtschaftsbetrieb – AWB) of the district of Neu-Ulm over a long period of time. This was also prompted by knowledge that utilisation of already generated energy in the form of combined heat and power generation (CHP) is one of the most efficient ways of achieving climate protection targets. This results from considering which courses of action are available for climate protection.

Application of Modified NiCrMo Alloy Systems for Boiler Tube Surface Protection in Waste-to-Energy Environments
© Thomé-Kozmiensky Verlag GmbH (9/2016)
Internationally, Waste to Energy and Incineration markets continue to grow in capacity as fossil fueled facilities decline and nuclear generation is curtailed. With this comes a greater need to burn more corrosive materials combust at higher temperatures and extract more energy. The reliability burden that this places on operators of plants is re-opening opportunities for thermal spray solutions as a cost effective solution for boiler tube protection. Where maintenance costs, opportunity costs and access restrictions may preclude alternative in-situ technologies, thermal spray technology may fill a gap in providing new reliable and flexible process and materials technologies for both mid- and long-term protection of water wall and superheater tubes. While historically thermal spray coating solutions have had a spotty record in waste to energy environments, advances in both process and materials technology specifically for WTE environments is such that coating performance now approaches the performance of high alloy wrought materials. This is verified through accurate laboratory modeling and scale tests and trials conducted by OEM’s and plants.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?