High efficient recycling route of WEEE

A novel Pyrometallurgical recycling route is being designed to recycle complex metallic materials containing plastics such as waste electric and electronic equipment (WEEE). The new proposed methodology overcomes huge challenges like improved recovery of valuable metals, better control of hazardous substances, improved process control and recycling capacity. The recycling process for E-Scrap would be developed in such way that no waste would be obtained and all products and byproducts could be saleable materials.

According to the WEEE directive 2002/96/EG, the term “Electric and Electronic Equipment” is applied to devices which uses electric currents or electromagnetic fields to work, as well as, equipments used for generation, transfer and measurement of such currents and fields not exceeding an AC voltage of 1000V and a DC voltage of 1500V. However, rapid development of new EEE products increase considerable the amount of WEEE produced every year. Only in Europe (EU27), WEEE arising was about 8.3 and 9.1 million tonnes per year in 2005 being 4% of the municipal waste and expecting to grow annually between 2.5 and 2.7% reaching about 12.3 million tonnes in 2020.

In 2010, only 3 million tons from the estimated 8 million of WEEE were officially collected, treated and reported to authorities in Europe, which indicates that a huge amount of scrap is being sold in the black market. Besides, Illegal handling of WEEE represents not only an economic concern but also an environmental threat due to hazardous substances such as mercury and cadmium contained in WEEE. This criminal concern is today getting high levels especially in European countries where no big smelters are located and thus the motivation to develop new flexible technologies with optimal results regarding metal recovery but requiring relatively low investment. In fact, the currently existing metallurgical recycling methods are inefficient due to the huge amounts of energy required, increased metal loss as well as waste generation.

WEEE-scrap is characterized for its complexity as metals, metals oxides, plastics, glass and ceramic are mixed all together, which ultimately makes its recovery a challenge for the industry from the technical and economic point of view. WEEE contains valuable base metals such as copper, aluminum, lead, zinc, precious metals (gold, silver, palladium and PGMs), as well strategic metals (e.g. gallium, germanium, tantalum, and indium), plastics and ceramics. Indeed, the organic content represents an important energy source, which can be used in pyrometallurgical processes.



Copyright: © IWARU, FH Münster
Quelle: 14. Münsteraner Abfallwirtschaftstage (Februar 2015)
Seiten: 0
Preis inkl. MwSt.: € 3,00
Autor: Fabian Diaz
Professor Dr.-Ing. Dr. h.c. Bernd Friedrich

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Die Zukunft der Müllverbrennung in einer modernen Kreislaufwirtschaft
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (10/2021)
Aktuell werden 26,3 Millionen Tonnen Abfälle in 66 Müllverbrennungsanlagen (MVA) und 32 Ersatzbrennstoff(EBS)-Kraftwerken verbrannt. Nach konservativer Schätzung müssen bis 2030 etwa 50 der 66 MVA modernisiert werden.

Development of local municipal solid waste management in the Western Transdanubia region of Hungary
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Hungarian municipal solid wastes (MSW) management has developed tremendously over the past 15 years. More than 3,000 landfills and dumps had been closed, just to mention one improvement. However, still, lots of work is necessary to accomplish the EU’s ambitious aim of decreasing landfilling and increasing recycling and composting.

Statistische Betrachtung von Infrarot-Sensordaten in der Aufbereitung mit Relevanz zur Brandfrüherkennung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Neue Zündquellen erschweren zunehmend die Lagerung und Aufbereitung von Abfällen, insbesondere durch Akkumulatoren oder Batterien kommt es immer wieder zu großen Schäden in abfallverarbeitenden Unternehmen. Zudem ist davon auszugehen, dass sich in den nächsten Jahren die in Verkehr gesetzte Menge an Akkumulatoren und Batterien stark erhöhen wird. Ohne geeignete Messsysteme ist es kaum möglich, Brände frühzeitig zu erkennen. Um mit dem zunehmenden Brandrisiko umzugehen und um brandbezogenen Gefahren entgegenzuwirken wer-den daher IR-Messsensoren eingesetzt. Diese Sensoren werden an verschiedenen Stellen platziert, an denen erfahrungsgemäß mit hohen Temperaturen zu rechnen ist, wie beispielsweise nach Zerkleinerungsaggregaten und anderen Aggregaten mit mechanischer Beanspruchung. Sensoren werden aber auch eingesetzt, um das Material am Ende der Verarbeitung noch einmal zu kontrollieren, bevor es in das Output-Lager befördert wird. Der vorliegende Beitrag wertet die Messdaten von mehreren Anlagenstandorten aus und vergleicht diese. Ziel ist es, Trends in den Daten zu erkennen, um mögliche Maßnahmen abzuleiten. Die Datengrundlage umfasst die Temperaturen der einzelnen Messpunkte sowie gemessenen Maximaltemperaturen. Diese Datengrundlage wird mit qualitativen Daten ergänzt, welche neben dem Grund der Temperaturüberschreitung auch das Material klassifiziert. In diesem Zuge wird auch eine statistisch signifikante Abhängigkeit mit dem verarbeiteten Material hergestellt und auch mit den im Einsatz stehenden Zerkleinerungsaggregaten in Bezug gebracht. Der Ver-gleich der Anlagenstandorte dient dabei der Abschätzung des Risikos für restmüllaufbereitende Unternehmen. Die zu vergleichenden Anlagen weisen teilweise die gleichen Inputmaterialien auf, unterscheiden sich jedoch im jährlichen Durchsatz. Der zu betrachtende Inputstrom umfasst neben gemischten Siedlungsabfällen, Gewerbeabfälle und Sperrmüll.

Influence of Lead on the Precipitation of Zinc in Synthetic Industrial Wastewater
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2018)
An efficient procedure of treating municipal solid waste is incineration which enables reduction of the waste volume, and energy recovery during combustion. During this process, fly ashes are produced.

Zweites Leben
© Rhombos Verlag (9/2018)
Die Stadtreinigung Hamburg testet im Forschungsprojekt FORCE neue Konzepte für Sammlung, Reparatur und Recycling von Elektroaltgeräten.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?