Eine Wirtschaftlichkeit von Biogasanlagen ist mit den neuen gesetzlichen Rahmenbedingungen schwieriger darstellbar als mit den Bonussystemen der vorangegangen Novellierungen des EEG. Um diese zu steigern ergeben sich mehrere Varianten, die oftmals mit weiteren Investitionen verbunden sind.
Direkte technische Verbesserungen, aus denen schnelle ökonomische Erfolge resultieren, bedürfen daher einer genaueren Analyse der Randbedingungen. Im Rahmen dieses Beitrages wird der Wärmebereich landwirtschaftlicher Biogasanlagen untersucht, insbesondere die Optimierung des Eigenwärmebedarfs, die in der Vergangenheit kaum berücksichtigt wurde und somit einiges an Potential erwarten lässt. Als Datengrundlage dienen 10-jährige Dokumentationen von Eigenwärmeverbräuchen, Fütterungsprotokolle sowie Temperaturmessungen verschiedener Wärmebilanzparameter wie Substrat, Biogas, Umgebung etc. Nach Auswertung der Messungen und erster Bilanzierungen wurde festgestellt, dass die Aufrechterhaltung der Fermentertemperatur die meiste Wärmeenergie verbraucht und gleichzeitig auch das größte Optimierungspotenzial aufweist. Erste Optimierungsmöglichkeiten im Substratbereich wurden identifiziert, wie passive und aktive Dämmung der Substrat-Einbringsysteme und Wärmerückgewinnung aus dem Nachgärablauf. Dabei wurden Einsparpotenziale von mehreren hundert Megawattstunden im Jahr kalkuliert, je
nach Menge und Temperaturanhebung der eingesetzten Substrate.
Die Vergütungsdauer nach dem EEG ist unabhängig von der Novellierung auf 20 Jahre plus das Jahr der Inbetriebnahme begrenzt. Es ergibt sich somit für die ersten 1.050 Biogasanlagen, die im Jahr 2000 durch das EEG erstmalig finanziert wurden, ein nachbleibender Vergütungszeitraum von etwa 6 Jahren. Es existieren derzeit keine allgemein verwendbaren Ansätze wie nach dieser garantierten Vergütungsperiode die Wirtschaftlichkeit einer landwirtschaftlichen Biogasanlage dargestellt werden könnte. Deshalb sind für die Zukunft Aspekte zu untersuchen, welche die Effizienz der Anlagen und die davon abhängige Ökonomie verbessern.
Copyright: | © Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock | |
Quelle: | 9. Rostocker Bioenergieforum (Juni 2015) | |
Seiten: | 10 | |
Preis inkl. MwSt.: | € 5,00 | |
Autor: | Thomas Knauer Prof. Dr.-Ing. Frank Scholwin Prof. Dr. Michael Nelles | |
Artikel weiterleiten | In den Warenkorb legen | Artikel kommentieren |
Betriebsstrategien für Biogasanlagen – Zielkonflikt zwischen netzdienlichem und wirtschaftlich orientiertem Betrieb
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
In einem intelligenten Energiesystem müssen „Smart Grid“ und „Smart Market“ Hand in Hand gehen (Aichele et. al, 2014). Änderungen am rechtlichen Rahmen, insbesondere im Erneuerbaren-Energien-Gesetz (EEG) haben zum Ziel, die Anforderungen zur Erhöhung der Erzeugung erneuerbarer Energien (EE) sowie zur Markt- und Systemintegration von EE in Einklang zu bringen (siehe hierzu Schwarz, 2014). Dies entscheidet, ob der Betrieb einer modernen EE-Anlage sowohl die Maximierung eigener Gewinne (Smart Market) als auch die Entlastung der übergeordneten Netze (Smart Grid) zum Ziel haben kann oder auf nur einen Aspekte ausgerichtet ist.
Fast methanification of swine manure as an example for substrates with low organic content
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
A biogas reactor of 45 m³ was fed with pure swine manure. A straw layer worked as an anaerobic filter on top of the fluid. The manure was continuously circulated to irrigate the straw. Hydraulic retention time (HRT) of straw was 45 days. HRT of manure was reduced from 45 to 7.5 days within one year. Average concentration of volatile solids (VS) of manure only was 1.8 %. We varied VS concentration and temperature to simulate normal disturbances of operation. Gas production normalized within one day after each short heating interruption. Variations of VS concentration had no negative influence on the Operation as a whole. After two months, a zone with granular sludge in autonomous fluidization was observed just below the straw layer. This shows that the reactor is a hybrid biogas reactor containing a fixed bed on the top, and an UASB zone below.
Der Weg der Zuckerrübe zum wirtschaftlichen Biogasbetrieb ‒ Eine betriebswirtschaftliche Betrachtung
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2012)
Als Alternative zum Mais kann (und wird) die Biogas-Zuckerrübe eine wichtige Rolle spielen, weil Ertragspotenzial und ein hoher Züchtungsforstschritt vorhanden ist und insbesondere auch die Vergärungseigenschaften positiv sind.
Die Evolution zu Smart Energy
© DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag GmbH (7/2011)
Nach zwei Veranstaltungen über Smart Metering sind die Veranstalter figawa und der Oldenbourg Industrieverlag den aktuellen Marktentwicklungen gefolgt und haben den Fokus deutlich ausgeweitet.
Erdgas und Bio-Erdgas als Kraftstoff – Energiekonzept der Bundesregierung berücksichtigt Klimaschutzvorteile
© wvgw Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH (11/2010)
Im Zusammenhang mit dem gesellschafts-, energie- und klimapolitisch geprägten Umbau des Energiesystems werden Energietechnologien zukünftig in noch stärkerem Maße an Kriterien wie Treibhausgasreduktion oder Versorgungssicherheit gemessen. Der bisher fast ausschließlich vom fossilen Energieträger Erdöl geprägte und global im Wachstum befindliche Verkehrssektor stellt dabei eine besondere Herausforderung dar. Vor diesem Hintergrund werden der klimaschonende und weitreichende Energieträger Erdgas sowie das regenerative Pendant Bio-Erdgas zunehmend auch für den Einsatz als Kraftstoff forciert. Der vorliegende Artikel analysiert die damit verbundenen Umwelt- und Klimaeffekte sowie die technischen Entwicklungspotenziale, welche für die Notwendigkeit einer beschleunigten Etablierung im Verkehrssektor sprechen.