Planung und Bau der 5. Turbine im Rheinkraftwerk Iffezheim

Das 1978 in Betrieb genommene Wasserkraftwerk Iffezheim war mit einer Auslegung von ca. 180 Überschreitungstagen von Anfang an prädestiniert für eine Erweiterung durch eine fünfte Maschine. Mehrere Planungsanläufe scheiterten an der Wirtschaftlichkeit eines solchen Projekts, das erst durch das Erneuerbare-Energien-Gesetz für die große Wasserkraft möglich wurde. Nach zwei sehr schwierigen Planungsphasen konnte die Realisierung der 5. Turbine Anfang 2009 beginnen. Die sehr komplexe Herstellung der Baugruben auf engstem Raum war begleitet von verschiedenen Problemen mit erheblichen Rückwirkungen auf die Bauzeit und die Bauausführung. Ungewöhnliche Lösungen im Bereich der Maschinentechnik führten am Ende zu einer gelungenen Lösung, die den Erwartungen hinsichtlich Erzeugung und Verfügbarkeit voll entsprechen konnte.

Die Stauhaltung Iffezheim mit der 1973gegründeten Rheinkra- werk IffezheimGmbH (RKI) ist die bisher letzte Staustufe vor der Rheinmündung in die Nordsee. Das Krafftwerk verdankt seine Existenz der Rheinbegradigung, begonnen durch Johann Gottfried Tulla im 19. Jahrhundert. In der Folge der Begradigung nahm wegen der kürzeren Fließstrecke bei gleicher Höhendifferenz die Strömungsgeschwindigkeit des Rheins so weit zu, dass es im Bereich des Oberrheins zu Eintiefungen der Rheinsohle kam, die dauerhaft die ganzjährige Schiffffahrt gefährdeten. Um Abhilfe zu schaffen, begann Frankreich 1928 im Oberrhein basierend auffrüheren deutschen Planungen Querbauwerke zur Sohlenstützung zu errichten. Am Grand Canal d’Alsace wurden die ersten vier Staustufen jeweils mit Kraftwerk, Wehranlage und Schleuse errichtet. Gemäß dem Versailler Vertrag stand Frankreich die energiewirtschaftliche Nutzung der Staustufen zu. Es folgten nach 1956 vier weitere Staustufen. Auf Grundlage des deutsch-französischen Vertrags von 1969 wurde schließlich der Bau der beiden Staustufen Gambsheimund Iffezheim vereinbart. Diese bei den letzten Bauwerke wurden nicht mehr als Ausleitungskraftwerke realisiert, sondern direkt im Rhein errichtet.



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft 01-02/2015 (März 2015)
Seiten: 6
Preis: € 10,90
Autor: Dipl.-Ing. Gerald Ittel

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Voll unter Strom: Bis 2050 Versorgung durch Erneuerbare Energien möglich – vielleicht:
© Deutscher Fachverlag (DFV) (8/2010)
Die Europäische Klimastiftung (ECF) hat eine von McKinsey erstellte Studie zur Stromversorgung der Zukunft veröffentlicht.

Entwurfs- und Tragwerksplanung für die 5. Turbine im Rheinkraftwerk Iffezheim – 2. Planungsphase
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (2/2015)
Das Ergebnis der ersten Ausschreibungsrunde hat die erwarteten Projektkosten deutlich überschritten und so die Wirtschaftlichkeit des Projekts in Frage gestellt. In der Folge wurde der Entwurf in den Fachbereichen Maschinentechnik, Bau und Stahlwasserbau hinsichtlich möglicher Einsparungen erneut überprüft. Durch die Wahl einer kleineren Maschine wurde die Ausführung eines abgesetzten Bauwerks mit einer steifenfreien Baugrube und ovaler Form im Grundriss möglich. Während der Ausführung wurden zur Kompensation der aufgetretenen Bauablaufstörungen während der Herstellung der Baugrube verschiedene Maßnahmen zur Entkopplung nacheinander geplanten Vorgänge mit dem Ziel der Reduzierung der Bauzeit entwickelt.

Entwurfs- und Tragwerksplanung für die 5. Turbine im Rheinkraftwerk Iffezheim – 1. Planungsphase
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (2/2015)
Für die Erweiterung des Rheinkraftwerks Iffezheim wurde eine Erweiterung um die Maschine 5 im Anschluss an das bestehende Kraftwerk vorgesehen. Neben dem Kraftwerkstiefbau und der erforderlichen Baugrube umfasst die Bauplanung die Einbindung der bestehenden Fischaufstiegsanlage und die Überführung der B 500. Bereits vorhandene Kraftwerksausrüstungen zur Wasserver- und -entsorgung sowie die Rechenreinigungs- und Krananlagen sollten für die Maschine 5 angepasst bzw. erweitert werden. Im Fachbereich Stahlwasserbau wurden Verschlüsse für den Turbinenein- und -auslauf, der Einlaufrechen, die Eisklappen und Klappen in der Geschwemmselrinne geplant. Die genannten Aspekte waren Basis für eine erste Planung, welche aufgrund eines ermittelten hohen Investitionsvolumens nicht ausgeführt wurde, weswegen eine 2. Planungsphase notwendig wurde.

Betriebsbereiche und Wirkungsgrade der Wasserkraftschnecke
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2013)
Wasserkraftschnecken werden seit 2001 kommerziell zur Stromerzeugung verwendet. Durch die vergleichsweise geringe Verbreitung gilt diese neue Niederdrucktechnologie noch als Nischenprodukt. Die vorliegende Arbeit bestätigt die Qualität der Technologie und zeigt weitere Verbesserungspotentiale auf. In umfangreichen Labormessungen wurden Wirkungsgrade für sieben Schneckentypen bei unterschiedlichsten Drehzahl-Durchfluss-Kombinationen und Achsneigungen gemessen und verglichen. Dabei zeigen sich sowohl ausgezeichnete Wirkungsgrade als auch die unterschiedlichen Auswirkungen von veränderten Gestaltparametern. Die Ergebnisse bieten eine zusätzliche Entscheidungsgrundlage für die Wahl der Wasserkraftmaschine und ihre Dimensionierung bei neuen Kraftwerksstandorten.

Experimentelle Untersuchungen an einem Wasserwirbel-Kraftwerk
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2013)
Da in der Literatur keine Anhaltswerte verfügbar sind, wurde im Rahmen dieser Arbeit ein mögliches Design für die Drallkammer eines Wasserwirbelkraftwerks entwickelt und in einem Modell im Maßstab 1: 9 getestet. Unterschiedliche Größen wurden variiert, um die bestimmenden Parameter zu erfassen. Dabei wurden Geschwindigkeiten und Leistungen an der Turbine gemessen. Der Durchmesser der Auslassöffnung hat den größten Einfluss auf die Geschwindigkeiten und den Turbinenwirkungsgrad, der bei ca. 50 % liegt. Die Wirkungsgradverläufe zeigen eine große Abhängigkeit von der Fließtiefe im Oberwasser. Das Kraftwerk mit einem Anlagenwirkungsgrad von ca. 31 % ist demnach für kleine Fallhöhen geeignet.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?