Das UGN BEKOM-H-Verfahren – eine nachhaltig die Rendite verbessernde Entschwefelungstechnologie
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
Die richtige Nutzung und Optimierung der verfahrenstechnischen Vorteile der Bioenergietechnik sind Grundvoraussetzung für die richtige Einordnung und deren gesellschaftlichen Bedeutung für den Energiemarkt. Im Vordergrund stehen dabei die Energiespeicherfähigkeit und die Energieverfügbarkeit gegenüber anderen regenerativen Energietechniken.

Wintertriticale-GPS – eine sinnvolle Ergänzung in Energiepflanzenfruchtfolgen
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
Anhand mehrjähriger Feldversuche an der LFA MV konnte für Wintertriticale zur Ganzpflanzenernte (GPS) bei einer N-Düngung nach der Stickstoffdüngerbedarfsanalyse (SBA) ein hohes Ertragsniveau bei gleichzeitig hoher Ertragsstabilität nachgewiesen werden. Auswertungen von Produktionsfunktionen basierend auf Daten aus N-Steigerungsversuchen ergaben, dass das hohe Ertragspotential bei einer Düngung nach SBA jedoch noch nicht ausgeschöpft ist und höhere Erlöse auch noch bei höheren N-Gaben möglich sind. Negative Auswirkungen auf die Umwelt sind hierbei kaum zu erwarten, da sich WT-GPS durch niedrige Nmin-Werte nach der Ernte auszeichnet. WT-GPS kann mit geringem Pflanzenschutzaufwand geführt werden. Agrarvögel werden durch die im Vergleich zur Mähdruschfrucht frühere Ernte bei GPS-Nutzung nicht negativ beeinflusst. Ein weiterer positiver Beitrag zur Biodiversität ist die Fruchtfolgegestaltung, die die Integration von WT-GPS ermöglicht. So können nach der Ernte sowohl Zwischenfrüchten angebaut als auch Winterraps pünktlich ausgesät werden. WT-GPS stellt somit eine sinnvolle Möglichkeit dar, um Energiepflanzenfruchtfolgen aufzulockern.

Erweitertes Auswerteverfahren für Biogas-Batch- Versuche zur quantifizierbaren Darstellung zeitlicher Verläufe
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
Derzeit ist eine erhebliche Ausweitung des Spektrums an Einsatzstoffen für Biogasanlagen zu verzeichnen. Für viele dieser Substrate ist der spezifische Biogasertrag als alleiniges Bewertungskriterium ohne quantitative Aussagen zum zeitlichen Verlauf der Biogas- und Methanbildung ungeeignet. Messmethoden, bei denen auch kinetische Parameter der Biogasbildung erfasst werden können, stehen bisher nur in kleinem Versuchsmaßstab zur Verfügung. Der experimentelle Ansatz für Batch-Versuche mit großen Gärgefäßen und Folienbeuteln hat den Vorteil großer Probeneinwaagen bei nur minimaler Probenaufbereitung, erlaubt jedoch durch vergleichsweise lange Messintervalle in der Regel keine Aussagen zum zeitlichen Verlauf. Durch das vorgestellte Versuchsdesign sowie die verbesserte Auswertungsmethode wird die Aussagefähigkeit dieser Versuche wesentlich erweitert. Das Verfahren wird am Beispiel zweier Partien Weizenstroh erläutert. Es konnten erhebliche Unterschiede sowohl im Biogasertrag als auch hinsichtlich der Abbaukinetik zwischen den beiden Strohpartien nachgewiesen werden.

Das TCR®-Verfahren – Chancen und Möglichkeiten der Effizienzsteigerung von Biogasanlagen
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
Durch die geplante Novellierung der Düngeverordnung (DüV) soll die Ausbringungsobergrenze für Stickstoff auch auf Gärreste pflanzlicher Herkunft ausgeweitet werden. Dies führt zu einer Verknappung der Flächen für die Ausbringung von Wirtschaftsdüngern und Gärresten vor allem in Gebieten mit einer hohen Dichte an Biogasanlagen und Viehzuchtbetrieben. Dies kann wiederum zu einer Erhöhung der Kosten für die Ausbringung der Gärreste in Nährstoffüberschussgebieten führen.

Betriebsstrategien für Biogasanlagen – Zielkonflikt zwischen netzdienlichem und wirtschaftlich orientiertem Betrieb
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
In einem intelligenten Energiesystem müssen „Smart Grid“ und „Smart Market“ Hand in Hand gehen (Aichele et. al, 2014). Änderungen am rechtlichen Rahmen, insbesondere im Erneuerbaren-Energien-Gesetz (EEG) haben zum Ziel, die Anforderungen zur Erhöhung der Erzeugung erneuerbarer Energien (EE) sowie zur Markt- und Systemintegration von EE in Einklang zu bringen (siehe hierzu Schwarz, 2014). Dies entscheidet, ob der Betrieb einer modernen EE-Anlage sowohl die Maximierung eigener Gewinne (Smart Market) als auch die Entlastung der übergeordneten Netze (Smart Grid) zum Ziel haben kann oder auf nur einen Aspekte ausgerichtet ist.

Analytische Untersuchung der thermischen Optimierung von Biogasanlagen
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
Eine Wirtschaftlichkeit von Biogasanlagen ist mit den neuen gesetzlichen Rahmenbedingungen schwieriger darstellbar als mit den Bonussystemen der vorangegangen Novellierungen des EEG. Um diese zu steigern ergeben sich mehrere Varianten, die oftmals mit weiteren Investitionen verbunden sind. Direkte technische Verbesserungen, aus denen schnelle ökonomische Erfolge resultieren, bedürfen daher einer genaueren Analyse der Randbedingungen. Im Rahmen dieses Beitrages wird der Wärmebereich landwirtschaftlicher Biogasanlagen untersucht, insbesondere die Optimierung des Eigenwärmebedarfs, die in der Vergangenheit kaum berücksichtigt wurde und somit einiges an Potential erwarten lässt. Als Datengrundlage dienen 10-jährige Dokumentationen von Eigenwärmeverbräuchen, Fütterungsprotokolle sowie Temperaturmessungen verschiedener Wärmebilanzparameter wie Substrat, Biogas, Umgebung etc. Nach Auswertung der Messungen und erster Bilanzierungen wurde festgestellt, dass die Aufrechterhaltung der Fermentertemperatur die meiste Wärmeenergie verbraucht und gleichzeitig auch das größte Optimierungspotenzial aufweist. Erste Optimierungsmöglichkeiten im Substratbereich wurden identifiziert, wie passive und aktive Dämmung der Substrat-Einbringsysteme und Wärmerückgewinnung aus dem Nachgärablauf. Dabei wurden Einsparpotenziale von mehreren hundert Megawattstunden im Jahr kalkuliert, je nach Menge und Temperaturanhebung der eingesetzten Substrate.

Prozessbegleitende Simulation zur Betriebsüberwachung von Biogasanlagen
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
Biogasanlagen sind verfahrenstechnische Anlagen, die auf komplexen biochemischen Prozessen basieren. Für landwirtschaftliche Biogasanlagen ist festzustellen, dass oft die notwendige Messtechnik fehlt, um den aktuellen Prozesszustand so beurteilen zu können, dass daraus das kurz- und mittelfristige Anlagenverhalten abgeleitet werden kann. Durch die Implementierung von mathematischen Modellen, wie z.B. das ADM1 und dessen Weiterentwicklungen, in Simulationssoftware ist es möglich, Biogasanlagen verfahrens- und regelungstechnisch als Prozessmodelle abzubilden.

Mykotoxine in Biogasanlagen
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
In der letzten Zeit werden Mykotoxine als eine mögliche Ursache für Hemmungen im Biogasprozess besprochen. Neben den möglichen Hemmungen im Prozess führen Mykotoxine auch zu Lagerungsverlusten und bewirken somit in zweierlei Hinsicht wirtschaftliche Verluste. Als eines der wichtigsten Substrate kommt Maissilage eine besondere Bedeutung zu. Daher werden Mykotoxine, die in Maissilage vorkommen können besprochen und die derzeitigen Kenntnisse über die Mykotoxine in Biogasanlagen kurz vorgestellt. Zum Schluss wird auf den Forschungsbedarf in dem Gebiet hingewiesen.

Technisch-ökonomisch-ökologische Analyse der hydrothermalen Carbonisierung (HTC) von Grünschnitt und sich anschließender Nutzungsoptionen
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
Die ökonomische Analyse der Konversion von biogenen Restsoffen zu hochwertigen Energieträgern zeigt, dass die daraus erzielte Erweiterung des Nutzungsspektrums auch mit einer deutlichen Steigerung der Brennstoffkosten einhergeht – besonders bei Aufbereitungsverfahren mit hohem Neuigkeitscharakter und entsprechend hohem Investitionsbedarf und geringerer Verfügbarkeit. Zudem erhöht eine Kompaktierung der HTC-Kohle für einen besseren Transport die Brennstoffkosten signifikant, weshalb eine Nutzung vor Ort mit wesentlichem Kostensenkungspotenzial verbunden ist.

Qualitative und Quantitative Betrachtung von Petro- und Biokraftstoffen mittels GCxGC-TOFMS: Neue Entwicklungen und Anwendungen
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
Die umfassend zwei-dimensionale Gaschromatographie (GCxGC; engl.: comprehensive two-dimensional gas chromatography) und die Detektion mittels Flugzeit-Massenspektrometrie (TOFMS; engl.: time-of-flight mass spectrometry) ermöglicht es komplexe Stoffgemische wie petrochemische Proben in Einzelbestandteile bzw. Substanzklassen zu trennen. Die Kombination charakteristischer Elutionsprofile mit der Möglichkeit, Massenspektren mittels auf Visual Basic basierender Algorithmen zu analysieren ermöglicht eine automatisierte und sehr detaillierte qualitative und quantitative Auswertung auch großer Datenmengen. Die GCxGC-TOFMS Analytik bietet somit im Vergleich zur konventionellen Gaschromatographie eine enorm gesteigerte Selektivität, die zur Analyse hochkomplexer Rohstoffe (z.B. Pyrolyseöl) notwendig ist. Darüber hinaus ist es mögliche eine Quantifizierung, gegliedert nach Kohlenstoffanzahl durchzuführen.

 1  2  3 . . . . >
Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Schnelle Sanierung
bei Bränden in Gebäuden mit
Produktions- und Anlagentechnik
SakostaCAU

Abfallausstellung
Nur wer die Geschichte kennt,
siegt im ewigen Kampf
gegen den Müll